
BIOINFORMATICS Vol. 00 no. 00 2005

Pages 1–9

Fast stochastic algorithm for simulating evolutionary
population dynamics
William H. Mather1,2,3, Jeff Hasty1,2,3,4, Lev S. Tsimring2,3⇤

1Department of Bioengineering, University of California, San Diego, CA, USA
2BioCircuits Institute, University of California, San Diego, CA, USA
3San Diego Center for Systems Biology, San Diego, CA, USA
4Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, CA
, USA
Received on XXXXX; revised on XXXXX; accepted on XXXXX

Associate Editor: XXXXXXX

ABSTRACT
Motivation: Many important aspects of evolutionary dynamics
can only be addressed through simulations. However, accurate
simulations of realistically large populations over long periods of
time needed for evolution to proceed are computationally expensive.
Mutant can be present in very small numbers and yet (if they are more
fit than others) be the key part of the evolutionary process. This leads
to significant stochasticity that needs to be accounted for. Different
evolutionary events occur at very different time scales: mutations are
typically much rarer than reproduction and deaths.
Results: We introduce a new exact algorithm for fast fully stochastic
simulations of evolutionary dynamics that include birth, death, and
mutation events. It produces a significant speedup compared to the
direct stochastic simulations in a typical case when the population
size is large and the mutation rates are much smaller than birth
and death rates. The algorithm performance is illustrated by several
examples that include evolution on a smooth and rugged fitness
landscape. We also show how this algorithm can be adapted for
approximate simulations of more complex evolutionary problems and
illustrate it by simulations of a stochastic competitive growth model.
Contact: ltsimring@ucsd.edu

1 INTRODUCTION
Natural evolution is an inherently stochastic process of population
dynamics driven by mutations and selection, and the details of
such evolutionary dynamics are increasingly becoming accessible
via experimental investigation (Finkel and Kolter, 1999; Ruiz-
Jarabo et al., 2003; Barrick et al., 2009; Pena et al., 2010; Chou
et al., 2011). The importance of stochasticity comes from the fact
that populations are always finite, mutations are random and rare,
and at least initially, new mutants are present in small numbers.
This realization prompted intensive studies of stochastic effects
in evolutionary dynamics (Gillespie, 1984; Baake and Gabriel,
2000; Jain and Krug, 2007; Desai et al., 2007; Brunet et al.,
2008; Hallatschek, 2011). Most of the models in these studies
consider a reproducing population of individuals which are endowed
with genomes that can mutate and thus affect either reproduction

⇤to whom correspondence should be addressed

or death rate, as with the classical Wright-Fisher (Fisher, 1930;
Wright, 1931) and Moran models (Moran, 1958) which describe
a fixed population of replicating individuals. Specific models vary
in the details of fitness calculation and mutation rules, but recent
theoretical studies of even relatively simple models lead to non-
trivial predictions on the rate of evolution as a function of the
population size and the details of the fitness landscape (Tsimring
et al., 1996; Kessler et al., 1997; Rouzine et al., 2003; Desai
et al., 2007; Brunet et al., 2008; Hallatschek, 2011). However,
the complexity of more realistic evolutionary models makes them
analytically intractable and requires researchers to resort to direct
numerical simulations in order to gain quantitative understanding of
underlying dynamics.

On the most basic level, an evolutionary process is a Markov
chain of discrete reactions of birth, deaths, and mutations
within a population of individuals. A direct and exact way of
computing individual evolutionary “trajectories” is to use the
Stochastic Simulation Algorithm (SSA) (Gillespie, 1977) or its
variants (Gillespie, 1976; Gibson and Bruck, 2000; Lu et al.,
2004), in which birth, death, and mutation events are treated
as Markovian “reactions.” Unfortunately, for realistically large
population sizes, direct stochastic simulation of even simple
models becomes prohibitively expensive. Hence, there is an
acute need for developing accelerated methods of stochastic
simulations of evolutionary processes. Such methods usually
involve approximations to the exact stochastic process based on
certain small or large parameters that characterize the problem (for
example, population size or mutation rates). Several approximate
methods have been developed in recent years in the context of
stochastic biochemical kinetics (Gillespie, 2001; Rathinam et al.,
2003; Cao et al., 2005; Rathinam and El Samad, 2007; Jahnke
and Altintan, 2010). Recently, Zhu et al. (Zhu et al., 2011)
proposed an approximate hybrid algorithm suitable for simulation
of evolutionary dynamics by combining the ⌧ -leap algorithm
(Gillespie, 2001) appropriate for abundant sub-populations that do
not change their sizes much between individual events, and the
direct SSA algorithm for small sub-populations. This method allows
one to use large time steps during which multiple birth and death
reactions may have occurred. However it slows down dramatically
after a new mutant has been produced, since the algorithm resorts to

c� Oxford University Press 2005. 1

Mather et al

the direct SSA for all events in which the new mutants are involved
until the population of the new mutant class reaches a pre-defined
threshold.

Here we develop a novel exact algorithm for simulation of
evolutionary dynamics of a multi-species population undergoing
asexual reproduction, death, and mutation. Unlike the direct
SSA, it only samples the evolutionary process at the times of
mutations. Stochastic contributions from mutation, birth, and
death are included exactly, which is especially important for new
species that initially contain a population size of one. We call
this algorithm BNB (“Binomial-Negative Binomial”), since as the
name indicates, a population update requires sampling binomial and
negative binomial pseudorandom variables with specific weights.
This can be done efficiently using techniques similar to those used
in the next reaction method (Gibson and Bruck, 2000).

If the mutations are rare compared with other (birth and death)
events, this algorithm offers a significant speed advantage with
respect to the SSA. Indeed, in most organisms, the mutation rate
is much smaller than the birth and death rates, e.g. the probability
of mutation per division for the genome in bacteria is µ

g

⇠ 10

�3

(Drake et al., 1998). Thus, only a small (compared to the population
size) number of new mutants appear in each generation. Even in
viruses that generally are characterized by a high mutation rate
µ
g

⇠ 1, most mutations are neutral and thus do not strongly
influence the population dynamics.

In the following, we begin with a general approach to the
stochastic simulation of a system of reactions that are arbitrarily
divided into “fast” and “slow” reactions. We then specialize to the
evolutionary model in which the mutation rate is assumed to be
much smaller than the birth and death rates. We present examples
that illustrate the accuracy and power of the proposed algorithm
for models describing evolution of a population regulated by serial
dilution. Then we discuss a modification of the algorithm that allows
for its use in more complex situations when the exact algorithm is
not applicable. Finally, we illustrate the approximate method by a
simple example of co-evolving species competing for a common
nutrient source.

2 ALGORITHM
The BNB algorithm is a stochastic updating rule for the state of
an evolving set of species, which are defined by their internal state
(“genotype”) that in turn determines the birth, death, and mutation
rates for each species. This algorithm is exact when the birth, death,
and mutation rates (not the propensities!) remain constant between
consecutive mutations. A single iteration of the BNB algorithm
updates the state of the system to the time just after the next mutation
has occurred. By applying this updating rule multiple times, the
dynamics of the evolving system can be sampled by “jumping”
from one mutation to the next. In case when the rates are changing
slowly between mutations, an approximate variant of the BNB can
be applied (see below).

The core of the BNB algorithm is based on an exact solution
for a stochastic model of dividing, dying, and mutating discrete
populations of cells. A single iteration of the BNB algorithm uses
this solution to rapidly perform the following steps: (1) determine
from which species and at what time a new mutant cell is generated,
(2) update the populations of all species to the time just prior to this

mutation, (3) generate a new mutant cell that either establishes a new
species in the simulation or is added to a species already contained
in the simulation, and (4) update the time of the simulation to the
time of this mutation.

This section contains the derivation and the detailed description
of the BNB algorithm.

Stochastic simulation of a two-scale stochastic process

We consider the general case of a continuous time and discrete state
stochastic system that is subject to a set of reactions among which
some are “fast” and some are “slow.” We designate them as fast and
slow operationally, for a given state of the system (e.g., abundances
of each species) at a given time. Typically, the mean time interval
between two consecutive fast reactions will be much smaller than
the mean time interval between two consecutive slow reactions. Our
goal is to jump directly from one slow reaction event to the next and
exactly sample the state of the system at the time of slow reaction.

Let us lump all slow reactions into one that we call “mutation”
and consider the dynamics of the system between two consecutive
mutations. For simplicity, we assume that the propensities for each
possible mutation are proportional to each other for a given system
state, such that we can select the type of mutation independently of
when a mutation occurs. If the probability of mutations were zero,
the probability p

i

(t) for being at state i at time t satisfies the master
equation that only includes fast reactions

dp
i

dt
=

X

j

R
ij

p
j

, with R
ii

= �
X

j 6=i

R
ij

and other R
ij

� 0 .

(1)
Now, suppose that mutations occur with rate µ

i

at state i. We can
introduce the probability P

i

(t) that the system is at state i at time
t and a mutation has not yet occurred. It is easy to see that P

i

(t)
satisfies the “leaky” master equation

dP
i

dt
=

X

j

R
ij

P
j

� µ
i

P
i

. (2)

The probability Y
i

(t) that at least one mutation has occurred while
the system was at state i before time t satisfies the following
equation

dY
i

dt
= µ

i

P
i

. (3)

Note that Y
i

(t) = 0 at initial time t = 0. Define the probability
P (t) ⌘

P
i

P
i

(t) for no mutation to have occurred by time t and
Y (t) ⌘

P
i

Y
i

(t) for some mutation to have occurred at least once
at any state by the time t. By construction, Y (t) + P (t) = 1, and
therefore

dP
dt

= �dY
dt

= �
X

i

µ
i

P
i

. (4)

Thus, P (t) is strictly non-increasing in time, as expected.
Knowledge of P (t) allows us to sample time to the next mutation
t
m

. We also need to know which state of the system is mutated. It is
easy to show that the probability ⇢

i

(t) that the system is at state i at
the time of a mutation is

⇢
i

(t
m

) =

µ
i

P
i

(t
m

)P
i

µ
i

P
i

(t
m

)

. (5)

Thus, assuming we can solve for P
i

(t), we can formulate the
following algorithm for updating the stochastic system at mutation

2

BNB algorithm for evolutionary dynamics

times:

Algorithm 1

1. Define the initial state of the system i0, i.e. define P
i

(0) = �
ii0

(where �
ij

is the Kronecker symbol).
2. Solve for P

i

(t), which provides functions P (t) and ⇢
i

(t)
(Eqs. 4–5).

3. Sample the next mutation time according to the cumulative
probability P (t). This can be done via the inversion method,
such that the next time t

m

= P�1
(r), where r is a uniform

random variable between 0 and 1.
4. Add t

m

to the current time.
5. Sample the distribution ⇢

i

(t
m

) to generate the new state i
m

just before the mutation (slow reaction).
6. Choose the specific mutation according to their relative

propensities and update the state of the system after the state
update in Step 5.

7. Return to Step 1 until finished.

Of course, to complete this algorithm, we should be able to
solve for or otherwise compute the dynamics of the probabilities
P
i

according to Eq. 2. While this may be difficult in general to do
analytically, it may still be much simpler that solving the full system.
In particular, as we discuss in the following Section, the problem
can be solved exactly when the fast reactions include only birth and
death while the slow reactions include only mutations.

Generating function solution for a single-species

birth/death/mutation model

There exists a vast literature on the analysis of statistical
properties of the so-called linear birth-death processes. The
analytical treatments usually involve solving the corresponding
master equation via the generating function method (see Bartlett
(1955); Cox and Miller (1965)). Exact solutions have been found
for several models including pure birth-death systems as well as
systems with immigration and emigration (see, e.g., Karlin and
Mcgregor (1958); Ismail et al. (1988); Novozhilov et al. (2006);
Crawford and Suchard (2011)). Here we will follow the same
general approach, but since we are interested in the statistics of
mutating species, we will add the mutation “reaction” in the model
which manifests itself through leakage of probability. We begin with
the case of a single class of species. The number of individuals n can
fluctuate due to statistically independent birth, death and mutation
reactions. Birth has propensity gn, death has propensity �n, and
mutation has propensity µn. As before, we are only interested in the
interval of time between two subsequent mutations, so the resultant
state of the mutated individual is irrelevant. Thus the mutation is
simply defined as the creation and subsequent departure of a single
individual from the class.

Define P
n

(t) to be the probability that the system is at state n
at time t and that a mutation has not yet occurred. The generating
function G(s, t) =

P1
n=0 Pn

(t) esn can be computed for an initial
population n0 at time t = 0 by (see SI for details)

G(s, t) = [(p
M

(t)� p
E

(t)) es G1(s, t) + p
E

(t)]n0 (6)

with

G1(s, t) =

1� p
B

(t)
1� p

B

(t)es
, (7)

p
M

(t) ⌘ RC(t) + 2�S(t)�WS(t)
RC(t)� 2gS(t) +WS(t)

, (8)

p
E

(t) ⌘ � (1� p
M

(t))
W � � � g p

M

(t)
, (9)

p
B

(t) ⌘ gp
E

(t)
�

, (10)

R ⌘
p

(g � �)2 + (2g + 2� + µ)µ and W = g + � + µ. Using
a uniform random number r distributed between 0 and 1, the next
mutation time is then

t
m

=

1

R
ln

r1/n0

(R�W + 2g)�W �R+ 2�

r1/n0
(�R�W + 2g)�W +R+ 2�

�
(11)

which exists for
✓
R�W + 2�
R+W � 2g

◆
n0

< r 1 . (12)

When Eq. 12 is not satisfied, this indicates that the population will
go extinct before a mutation occurs if the population is unperturbed
for infinite time. The time to extinction, t

x

, can then be sampled by

t
x

= P�1
0 (r) =

1

R
ln

W �R� 2�r�1/n0

W +R� 2�r�1/n0

�
. (13)

which depends on inversion of the extinct state probability P0(t).

Binomial – Negative Binomial expansion

After computing the time to the next mutation, we need to generate
a sample number of individuals at the time of mutation. The number
of individuals conditional on no mutation at time t is distributed
according to the generating function G(s, t) given by Eq. 6. Here
we show that this seemingly complicated distribution can be exactly
sampled by drawing two random numbers - one binomial, and one
negative binomial. Many popular software packages, e.g. (Press
et al., 2007), contain fast algorithms for generating these random
numbers (note that negative binomials can be generated by Poisson
random variates with a Gamma-distributed parameter).

Equation 6 can be recast via a binomial expansion

G(s, t) = p
M

(t)n0

n0X

m=0

n0!

m! (n0 �m)!

G1(s, t)
mems

·
✓
1� p

E

(t)
p
M

(t)

◆
m

✓
p
E

(t)
p
M

(t)

◆
n0�m

. (14)

Since an integer power of a geometric generating function
corresponds to a negative binomial generating function, Eq. 14 can
be interpreted as a generating function of a process in which the
system either has mutated by time t with probability 1� p

M

(t)n0 ,
or if the system hasn’t yet mutated, then it is in a state ñ whose
distribution is a binomial superposition of n0 negative binomial
distributions. While Eq. 14 does not directly provide the probability
to be in a particular state at the time of a mutation, it provides the

3

Mather et al

probability P
n

(t) at an arbitrary time t conditional on no mutation.
We can then generate a sample of the population ñ conditional on
no mutation at time t by the following procedure.

Algorithm 2

1. Generate a binomial random number m̃, with success
probability 1� (p

E

(t)/p
M

(t)) and n0 terms.
2. If m̃ = 0, then the system at time t is in the extinct state ñ = 0.
3. Otherwise, generate the new state variable ñ: ñ = m̃+

˜NB(m̃, p
B

(t)), where ˜NB(m̃, p
B

(t)) is a negative binomial
number of order m̃ and probability of success p

B

(t).

We are also interested in the probability ⇢
n

(t) for a system
to be in the state n at the mutation time. It is easy to see
that ⇢

n

(t) / µ
n

P
n

(t) / nP
n

(t) (see Eq. 5). To compute these
probabilities, we introduce the corresponding generating function
G

⇢

(s, t) =
P1

n=0 ⇢
n

(t) esn. After straightforward algebra, we
obtain from Eq. 6

G
⇢

(s, t) =

✓
(p

M

(t)� p
E

(t)) es G1(s, t) + p
E

(t)
p
M

(t)

◆
n0�1

· es G1(s, t)
2 . (15)

which has the binomial expansion

G
⇢

(s, t) =
n0�1X

m=0

n0!

m! (n0 �m)!

G1(s, t)
m+2

✓
1� p

E

(t)
p
M

(t)

◆
m

· e(m+1)s

✓
p
E

(t)
p
M

(t)

◆
n0�1�m

. (16)

Equation 16 has the same form as Eq. 14, and thus, ⇢
n

can be
also sampled. Specifically, the algorithm for computing the state of
the system just before the next mutation (at time t

m

) for the single
species reads as follows.

Algorithm 3

1. Generate a binomial random number m̃, with success
probability 1� (p

E

(t
m

)/p
M

(t
m

)) and n0 � 1 terms.
2. Generate the updated state ñ at the mutation time:

ñ = m̃+ 1 +

˜NB(m̃+ 2, p
B

(t
m

)), where ˜NB(m̃, p
B

(t)) is
a negative binomial number of order m̃ and probability of
success p

B

(t).

Note that the system will never be in the extinct state, which reflects
that an extinct population cannot mutate.

Simulating multiple co-evolving species: first mutation

method

In this section we return to the original problem of an evolving
population of multiple species. We enumerate species by index
i, with n

i

(t) individuals in each species. We are interested in
sampling the set {n

i

(t
m

)} at mutation times t
m

. We assume that the
system parameters (birth, death, and mutation rates) do not change
between mutations unless the algorithm is ended early between two
mutations. At the time of mutation, one individual is created from

mutating class i
m

and, depending on the type of mutation, is either
added to one of the other existing classes (if such a class already
exists) or becomes the founding member of a new class.

The algorithm for generating a sample stochastic evolution
trajectory, which we call First Mutation BNB, is as follows.

Algorithm 4

1. Initialize the system with N classes of species at time t = 0.
Specify populations of all classes n

i

, i = 1, ..., N . Each class
has its own set of birth, death, and mutation rates g

i

, �
i

, µ
i

.
2. For each class, generate N random numbers r

i

uniformly
distributed between 0 and 1. For each i = 1, ..., N , generate
a time t

i

to the next mutation by Eq. 11. When Eq. 12 is not
satisfied, set t

i

= 1.
3. Find the minimum mutation time t

m

= min(t
i

) and the
corresponding class i

m

. Update the time t ! t+ t
m

.
4. Update the population for the mutated class i

m

using two
random numbers (one binomial and another negative binomial)
according to the Algorithm 3.

5. Update the populations of all other classes according to
Algorithm 2.

6. Select the specific mutation that occurs. If the mutation
generates a member of a nonexistent class, create a new class
N + 1 with n

N+1 = 1 and its own set of parameters
g
N+1, �N+1, µN+1. Otherwise, add 1 to the corresponding

existing class.
7. One or several of the non-mutated classes may have zero

population and are thus extinct. Remove extinct classes from
the list and reduce the number N of classes accordingly.

8. Return to Step 2 until the algorithm has completed.

To end the algorithm at a specific time rather than at a mutation
event, all populations can be updated according to Algorithm 2 with
the time duration t⇤ � t, where t is the current time, and t⇤ is the
prescribed end time. This update would be done just after Step 2
when t⇤ < t+min(t

i

) first occurs. Ending at a specific time is
useful for a number of purposes, such as if the population is reported
or modified at fixed time intervals, or if rates are adjusted at fixed
time intervals.

The Algorithm 4 is analogous to the First Reaction Method used
for stochastic simulation of reaction networks (Gillespie, 1976),
in that the simulation of a system with N classes of co-evolving
species generates 3N random numbers in order to step to the
next mutation. This algorithm can thus become inefficient as the
number of classes becomes large. To remedy this shortcoming, an
optimized and only slightly more complex version of this algorithm
is presented in the next section.

Simulating multiple co-evolving species: next mutation

method

In fact, the number of random variables generated for each mutation
in Algorithm 4 is excessive. Different species evolve independently
between mutations, and even at the mutation time, only two classes
are coupled, due to the mutating population generating and then
contributing a single member to another species class. If this

4

BNB algorithm for evolutionary dynamics

mutational coupling did not exist, the dynamics of species would
be statistically independent at all times, and we could simulate all
species independently using only 3 random numbers per mutation
event.

This line of reasoning leads to a similar but optimized algorithm
(see SI for the algorithm and further justification), where the
populations and next mutation times of species are resampled only
for the two species that are coupled via a mutation event, while
population sizes and next mutation times of all other classes are
not re-sampled. Validity of the algorithm hinges on the statistical
independence of species that are uncoupled by a mutation. The
method is analogous to the Next Reaction Method (Gibson and
Bruck, 2000), so we label the algorithm Next Mutation BNB.

The optimized scheme reduces the typical number of new random
variables required per mutation to only 6 after the first iteration,
independently of the total number of classes N . Only initialization
and finalization of the algorithm have a computational cost of
order N , so efficiency of the algorithm primarily depends on how
frequently the algorithm is restarted, as is the case whenever the
whole population is sampled for observation.

The Next Mutation BNB algorithm is always as fast or faster than
the First Mutation BNB. We thus use Next Mutation BNB (or just
BNB) exclusively for the simulation examples of this paper.

Approximate simulation method using BNB

One major benefit of the BNB algorithm is that binomials and
negative binomials rapidly generate an update for the evolving
system with linear propensities for birth, death, and mutation in
a non-interacting population. While this situation is typically the
case for cells kept in log-phase growth, the cases when species are
interacting or when propensities deviate from a linear law are also
of interest. Because of this, we outline how the BNB algorithm
can be adapted to approximately, but accurately, simulate more
complicated systems.

The basis of the BNB algorithm is the generating function
solution Eq. 6, and it is straightforward to show from the short
time form of this generating function that the BNB algorithm
applied for sufficiently short time increments, during which birth,
death, and mutation rates are considered constant, can simulate
systems with population-dependent rates. Between BNB updates,
all of these rates can be updated in a state-dependent manner.
This approach is similar to the ⌧ -leap approximation to stochastic
systems, which is often used to accelerate simulations of chemical
reaction networks (Gillespie, 2001). The basis of ⌧ -leap is that the
propensities for reactions can be considered approximately constant
during some time interval, such that the update scheme for ⌧ -
leap assumes each reaction occurs a Poisson-distributed number of
times. Simulation error magnitude in ⌧ -leap is closely associated
with how well propensities are kept constant during a given time
interval, and based on this connection, a few prescriptions for the
step size have been suggested (Gillespie and Petzold, 2003; Cao
et al., 2006, 2007). In contrast, BNB as an approximate updating
scheme assumes that the propensities are approximately linear with
respect to population, i.e. having constant rates. Deviation from the
linear law is the primary factor influencing simulation error in BNB
updating.

An important aspect of an approximate BNB updating method
is that large and small species populations are treated uniformly,

such that the same updating scheme applies to both situations with
equal speed and relative accuracy. This may be contrasted to ⌧ -leap
methods, which due to large relative fluctuations of the propensity
for small populations are no longer valid except for very short time
steps. Zhu et al. (2011) introduced a hybrid ⌧ -leap method which
simulates species lower than a given population (the “cutoff”) using
direct Gillespie algorithm. The tradeoff for the increased accuracy
is a much-increased workload, since Gillespie algorithm simulates
each reaction event individually. New species, which start as single
cells, or species that naturally exist in low abundances are especially
susceptible to an increase in workload for finite cutoff.

3 RESULTS
Exact simulations

In this section we will apply the BNB algorithm to examples
that can be exactly simulated using BNB. These examples deal
with modeling the evolution of heterogenous cell populations in a
hypothetical bioreactor designed to maintain exponentially growing
cultures. We illustrate several phenomena that have been explored
previously in analogous situations, e.g. for populations of fixed
size, though we pursue these phenomena in the regime where
large fluctuations in total population size (10-fold in most of our
simulations) are routine.

The following models assume that cells are kept sufficiently
dilute in culture such that limiting nutrients and other cell-cell
interactions are not a factor. These cells thus grow and divide
freely. The bioreactor prevents cell cultures from growing too dense
by measuring the population size periodically (after every time
duration �t) and diluting the culture by binomial sampling to the
mean population size n

min

once the population has exceeded the
population size n

max

. In the simulations, we advance time directly
from one mutation to the next or until the system has evolved
longer than the maximal time duration �t, at which point cells
may be diluted if the population has exceeded n

max

. It is also
straightforward to simulate a bioreactor that continuously dilutes
cultures to stem population growth, where the rate of media turnover
and, correspondingly, cell “death” is controlled, but we do not
consider such an case here. An analysis in the SI demonstrates that
performance of BNB for these situations can far exceed that for
direct Gillespie and ⌧ -leap methods.

Abrupt dilution events can greatly enhance the effect of
stochasticity, since there is a corresponding reduction in genetic
diversity associated with each subsampling of the population. The
smaller population after a dilution event will be heavily influenced
by the particular individuals retained, leading to a form of the
founder effect (Templeton, 1980). Even in light of this fact, we show
that many phenomena found for fixed population sizes, e.g. wave
behavior for population fitness, also occur using a dilution protocol
that might occur experimentally.

Linear fitness model Suppose that species are characterized by a
positive integer index m that is a measure of fitness. Birth rate g

m

is a linear function of m, g
m

= 1 + ✏ (m � 1). Death rate �
m

is
constant across species. Mutation rate is proportional to growth rate
(faster growing species also mutate faster), µ

m

= ⌘g
m

. During a
mutation of species with index m, a new member of species with
index m� 1 or m+1 is created, as chosen uniformly at random. If

5

Mather et al

sp
ec

ie
s

in
de

x

time

sp
ec

ie
s

in
de

x

0 2x104 4x104

10

20

30

40

50

60

time
0 2x104 4x104

20

40

60

80

100

120
time

sp
ec

ie
s

in
de

x

0 2x104 4x104

20

40

60

80

100

time

sp
ec

ie
s

in
de

x

0 2x104 4x104

10

20

30

40

50

C DC D

A B

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

Fig. 1. Simulations of the linear fitness model with �t = 0.1, ✏ = 10�3,
⌘ = 10�3, n

min

= n
max

/10. The instantaneous distributions of the
populations over the species index normalized by n

max

as a function of time
are shown for n

max

= 104 (A) and n
max

= 105 (B). Wave-like behavior
is evident in both cases, though the smaller population leads to a noisier and
slower wave. Panels C and d show the corresponding probabilities averaged
over 800 realizations. The wave velocity, by a least squares linear fit to the
ensemble mean fitness, is 0.93⇥ 10�3 and 2.1⇥ 10�3 indices per unit
time for (C) and (D), respectively.

A B

3 4 5 6

0

2

4

6

log10 nmax

ve
lo

ci
ty

 (1
0−

3)

simulation
linear fit

3 4 5 6

0

2

4

6

log10 nmax

ve
lo

ci
ty

 (1
0−

3)

simulation
linear fit

Fig. 2. (A) The wave velocity (indices per unit time) of the linear fitness
system has a slow (logarithmic) dependence on the population size set by
n
max

, in agreement with theoretical results (Tsimring et al., 1996; Kessler
et al., 1997; Rouzine et al., 2003; Desai et al., 2007; Brunet et al., 2008;
Hallatschek, 2011) (parameters are the same as in Fig. 1). Blue dots represent
individual velocity measurements based on least squares fitting of a line to
the last half of the mean index trajectory. Red line shows the least squares
fit of the velocity as a linear function of lnnmax over the range nmax > 104.
The velocities from Fig. 1C and Fig. 1D are plotted as green squares and
diamonds, respectively. (B) Same as (A) for ✏ = 10�4 and ⌘ = 10�2. The
weaker fitness gradient leads to a noisier distribution of velocities.

a species with index m = 1 mutates, a new member of the species
with index 2 is always created.

It has been demonstrated for ✏ > 0 in the case of a constant
total population that evolution on a linear fitness landscape leads
to traveling population waves (Tsimring et al., 1996; Kessler et al.,
1997; Rouzine et al., 2003; Desai et al., 2007; Brunet et al., 2008;
Hallatschek, 2011), such that the mean fitness of the population
linearly grows in time. However, the finite-size stochastic system

0 10 20 30
0

5

10

15

20

perturbation amplitude ν

ve
lo

ci
ty

 (1
0-3

)

alternating,
high population

0 10 20 30
0

5

10

15

20

perturbation amplitude ν

ve
lo

ci
ty

 (1
0-3

)

quenched randomness,
high population

0 10 20 30

0

2

4

6

8

perturbation amplitude ν

ve
lo

ci
ty

 (1
0-3

)

alternating,
low population

0 10 20 30

0

2

4

6

8

perturbation amplitude ν

ve
lo

ci
ty

 (1
0-3

)

quenched randomness,
low population

A B

C D

Fig. 3. Ruggedness of the fitness landscape impacts speed of evolution in a
linear fitness model. Shown are apparent wave velocities (blue dots) derived
by least-square fitting of the mean index hmi across species as a function
of time. The model with deterministic alternating fitness and n

max

= 104

(A) or n
max

= 105 (B) leads to a smooth decay of wave velocity with
respect to the perturbation amplitude ⌫. In contrast, a model with quenched
disorder in fitness and n

max

= 104 (C) or n
max

= 105 (D) exhibits an
abrupt decrease in wave velocity suggesting a phase transition. In all cases,
n
min

= n
max

/10, ⌘ = 10�3, ✏ = 10�2, �
m

= 0.1, and �t = 0.02.
The red curve indicates trend lines generated by a Savitzky-Golay filter.

can only be treated heuristically (Tsimring et al., 1996; Kessler
et al., 1997), asymptotically (Rouzine et al., 2003; Desai et al.,
2007; Brunet et al., 2008), or under certain specific modeling
assumptions (Hallatschek, 2011). Thus, exact numerical simulations
of large evolving populations in linear fitness landscapes are useful
for testing the existing theories. Simulations indeed produce wave-
like behavior (see Fig. 1). The wave velocity scales linearly with the
logarithm of the population size, as predicted (see Fig. 2).

We used similar simulations to study the effects of quenched
fitness fluctuations on the propagation of traveling evolution waves.
This problem is qualitatively analogous to the models of transport
in systems with quenched disorder that are known to exhibit phase
transitions (Bouchaud et al., 1990; Monthus and Bouchaud, 1996),
and we expect similar behavior for evolution in a linear model
with quenched disorder in the growth rate law. We assumed that
the fitness as a function of the species index m has a fluctuating
piece in addition to the linear dependence. Specifically, we consider
growth rates that vary as g(q)

m

= 1 + ✏ (m � 1 + ⌫ ˜R
m

), where
⌫ � 0 provides the scaling of noise, and ˜R

m

2 [�0.5, 0.5] are
independent uniform random numbers. In the case when ⌫ < 1, an
increase in m always leads to an increase in growth rate, and wave
propagation should proceed but with moderately reduced velocity.
The case with ⌫ > 1 is qualitatively different, since an increase
in m need not imply an increase in fitness. In this regime, it is
possible to form rare but wide barriers due to fluctuations in the
fitness, and these barriers when they exist can trap the system for
an exponentially large time. This case can be contrasted against a

6

BNB algorithm for evolutionary dynamics

sp
ec

ie
s

in
de

x

20

40

60

80

0

0.05

0.1

0.15

0.2

time
0 2x104 4x104

sp
ec

ie
s

in
de

x

20

40

60

80

0

0.2

0.4

0.6

0.8

1

time
0 2x104 4x104

A B

Fig. 4. Wave behavior for the evolution in a model with competition,
simulated using BNB as an approximate algorithm with time step ⌧ = 1.
(A) A single realization of the species distribution as a function of time for
initial population 100. (B) The mean population distribution for an ensemble
of 800 simulations.

potential with similar but deterministic variation g(a)
m

= 1+ ✏ (m�
1 + ⌫((m mod 2)� 0.5)), which for ⌫ > 1 has fitness barriers
only a single species wide. Figure 3 shows that quenched disorder
exhibits substantially different behavior than the case when fitness
contains regular variation. The system with quenched disorder in
particular exhibits a sharp decrease in wave velocity as disorder is
increased to ⌫ > 1, akin to a phase transition.

NK model simulations Due to the general way the BNB algorithm
treats mutations, it can be applied to more complicated evolutionary
models. We used a variant of the NK model (Kauffman and Levin,
1987) to simulate evolution on fitness landscapes with various
degrees of ruggedness. Despite large fluctuations in population,
we could reproduce classical results for NK models, including
state-dependent wave speed for smooth fitness landscapes, and
punctuated evolution for rugged landscapes. Results and analysis
of this model are found in the SI.

BNB as an approximate algorithm: evolution in

nutrient-limited environments

BNB can also be applied as an approximate algorithm for systems
with state-dependent growth rates. Propensities may deviate from
the linear law assumed in the BNB algorithm, but the BNB
algorithm may still approximate a system with non-constant birth,
death, and mutation rates by evolving the system with a BNB step
restricted to a short duration ⌧ . Rates are then updated using the new
populations before integrating the system with another BNB step,
and so on. Validity of this process depends on self-consistency of
the assumptions in the BNB algorithm, especially that propensities
for reactions are independent of other species and proportional to
population. See SI for details.

We checked performance of this approximate algorithm for a
system in which several species compete for a common nutrient
that is supplied at a constant rate. Different species can consume
this nutrient with different effectiveness, which provides selective
pressure. Specifically, we suppose a linear fitness model for species,
g
m

= a
m

�
1 +

P
`

a
`

n
`

/K0

��1
, �

m

= 0.1, µ
m

= ⌘ g
m

, a
m

=

1+ ✏(m�1), with species index m, ⌘ = 10

�3, and a scaling factor
✏ = 1. In contrast to the other simulations in this text, birth rates
are coupled in such a way that the total population in the system
autonomously relaxes on average to a fixed value n̄ ⇡ 10K0

without the need of dilution events triggered by the population.

0 5000 10000
0

1000

2000

3000

4000

5000

population count

fre
qu

en
cy

0 50 100 150
0

10

20

30

cutoff

ro
ot

 L
2 e

rro
r

0 50 100 150
0

2

4

6

8

10

cutoff

w
or

kl
oa

d

0 1 2 3
0

5

10

15

20

inverse time step

ro
ot

 L
2 e

rro
r

BNB
hybrid
direct

A B

C D

Fig. 5. Simulation accuracy for the model with competition. Using BNB
(red), hybrid ⌧ -leap (dashed blue), or direct SSA(light green), the model
with K0 = 1000 and initial population = 100) was simulated over 105

realizations. As a measure of error, statistics of the population of the first
mutant (index=2) were examined at t = 50. (A) The histogram (bin
width= 250) of this population for simulations using step size ⌧ = 5. BNB
matches direct simulation closely, while hybrid ⌧ -leap with cutoff 10 suffers
from major inaccuracies. (B) L2 error between the histogram of direct SSA
simulation and that of either BNB or the hybrid ⌧ -leap normalized by the
minimal expected statistical deviation, see SI for details. (C) same as (B),
but as a function of the cutoff value for the hybrid ⌧ -leap algorithm with
⌧ = 5. (D) Mean workload of the hybrid ⌧ -leap and the approximate BNB
algorithms, normalized by the workload for the BNB algorithm, as a function
of the cutoff value.

The evolution of the system is linked to the ratio of growth rates
g
m1/gm2 = a

m1/am2, which indicates that species with a higher
index m tend to grow faster than those with lower index. Due to this
effect, the system exhibits wave-like behavior (see Fig. 4).

The recurrent creation and subsequent growth of new species in
the competition model suggests that BNB could maintain better
accuracy than ⌧ -leaping schemes, since BNB faithfully simulates
arbitrarily small populations and also exponential growth. We tested
this for short-time simulations, and we found that in this context that
BNB can provide consistently increased accuracy when compared to
a hybrid ⌧ -leap algorithm (see Fig. 5).

4 DISCUSSION
In this paper, we have proposed an algorithm, which can be used
to sample exactly co-evolving species that do not interact between
mutations, and faithfully approximate the evolution of weakly-
interacting species. BNB algorithm not only accounts for the
stochastic fluctuations that arise due to the random nature of genetic
mutations, but it also accounts for the small-number fluctuations
due to the growth of new species that are spawned as single cells.
Each iteration of the BNB algorithm generates the time of the next
mutation and the abundances of all species just after the mutation.

7

Mather et al

This algorithm is exact when the birth, death, and mutation rates
do not change between consecutive mutations. Although similar
in spirit to approximate leaping schemes developed for modeling
stiff stochastic chemical kinetics (Gillespie, 2001; Rathinam et al.,
2003; Cao et al., 2005; Rathinam and El Samad, 2007; Jahnke
and Altintan, 2010; Zhu et al., 2011), it differs significantly by
providing an exact sampling at (irregular) intervals corresponding to
mutational events. The method yields a substantial speed advantage
over a straightforward stochastic simulation algorithm when the
mutations are rare compared with birth and death events. The
method is accessible, since the central part in implementing BNB
is constructing fast methods that generate binomial and negative
binomial pseudorandom numbers, both of which are available in
standard code libraries (Press et al., 2007). More generally, the
BNB algorithm is applicable to the simulations of systems in
which underlying reactions are all first order and their rates remain
unchanged between coarse-grained simulation steps.

Using the exact BNB algorithm, we simulated several evolution
models for a hypothetical bioreactor that performs abrupt dilutions
of cell culture when the total cell population exceeds a prescribed
value. An analogous experimental bioreactor would periodically
reduce the total number of cells, replenish nutrients, and
remove wastes in order to maintain log-phase growth of bacterial
populations. In contrast to the classical theoretical setting, where
the total number of cells is often kept constant, our model bioreactor
maintained periodic 10-fold variations in the total number of cells.
Despite these wild fluctuations in total population size, most
phenomena and population size scaling were preserved. We found
the classical scaling laws of adaptation velocity with the population
size, as well as the evidence of a phase transition in the case of
rugged linear models.

Real cell cultures almost always exhibit some degree of
interaction within and among species, and so we showed how the
BNB algorithm can also be extended to an approximate algorithm
that is competitive with ⌧ -leap and hybrid schemes adapted for
evolutionary dynamics simulations (see, for example, (Zhu et al.,
2011)). A practical advantage of the approximate BNB algorithm
is its uniformity; a BNB step is implemented with identical code
for all population sizes. A specific model for species competing
for common nutrients was introduced to test BNB, and BNB was
found to readily provide good accuracy with minimal workload
when compared to analogous ⌧ -leap simulations. We anticipate the
advantage of BNB to be maintained in the case where simulations
require accurate and fast simulation of exponential growth of species
that routinely are found at low population counts, as is the case
when new fitter species grow to overtake the population. It should
be noted, however, that even though the BNB algorithm can be used
to simulate rather general systems, there are systems where BNB
performs comparably to or even worse than ⌧ -leap.

The present work presents the foundation for the BNB
algorithm, but there exist several immediate directions for future
refinement. We anticipate that simple modification of the BNB
algorithm should enhance the accuracy for a wide variety of
models with interacting species, analogously to a proposed
midpoint method for ⌧ -leaping (Anderson et al., 2010). Similarly
straightforward modifications may also lead to a BNB formalism
that approximates time-dependent birth, death, and mutation rates,
as needed for externally driven metabolic networks, e.g. the GAL
network (Bennett et al., 2008). A less trivial extension would be

to remove the assumption that birth, death, and mutation rates are
constant across species. Experimentally, cells within a common
species exhibit variability in their cellular state (Elowitz et al.,
2002), which could lead to a distribution of growth rates within
a single species. Such a modified BNB could then be useful for
answering questions concerning how species evolution couples to
cellular state.

ACKNOWLEDGEMENT
Funding: This work was supported by the National Institutes
of Health, grants P50GM085764 [WM]; RO1GM069811 [JH];
R01GM089976 [LT].

REFERENCES
Anderson, D. F., Ganguly, A., and Kurtz, T. G. (2010). Error analysis of tau-leap

simulation methods. arXiv:0909.4790v2.
Baake, E. and Gabriel, W. (2000). Biological evolution through mutation, selection,

and drift: An introductory review. Ann. Rev. Comp. Phys, 7, 203–264.
Barrick, J. E., Yu, D. S., Yoon, S. H., Jeong, H., Oh, T. K., Schneider, D., Lenski, R. E.,

and Kim, J. F. (2009). Genome evolution and adaptation in a long-term experiment
with escherichia coli. Nature, 461(7268), 1243–1247.

Bartlett, M. (1955). An Introduction Stochastic Processes with Special Reference to
Methods and Applications. Cambridge University Press, Cambridge, U.K.

Bennett, M. R., Pang, W. L., Ostroff, N. A., Baumgartner, B. L., Nayak, S., Tsimring,
L. S., and Hasty, J. (2008). Metabolic gene regulation in a dynamically changing
environment. Nature, 454(7208), 1119–1122.

Bouchaud, J. P., Comtet, A., Georges, A., and Ledoussal, P. (1990). Classical diffusion
of a particle in a one-dimensional random force-field. Annals Of Physics, 201(2),
285–341.

Brunet, E., Rouzine, I. M., and Wilke, C. O. (2008). The stochastic edge in adaptive
evolution. Genetics, 179(1), 603–620.

Cao, Y., Gillespie, D. T., and Petzold, L. R. (2005). The slow-scale stochastic
simulation algorithm. Journal Of Chemical Physics, 122(1), 014116.

Cao, Y., Gillespie, D. T., and Petzold, L. R. (2006). Efficient step size selection for the
tau-leaping simulation methods. Journal Of Chemical Physics, 124(4), 044109.

Cao, Y., Gillespie, D. T., and Petzold, L. R. (2007). Adaptive explicit-implicit tau-
leaping method with automatic tau selection. Journal Of Chemical Physics, 126(22),
224101.

Chou, H.-H., Chiu, H.-C., Delaney, N. F., Segre, D., and Marx, C. J. (2011).
Diminishing returns epistasis among beneficial mutations decelerates adaptation.
Science, 332(6034), 1190–1192.

Cox, D. and Miller, H. (1965). The Theory of Stochastic Processes. Wiley, New York.
Crawford, F. W. and Suchard, M. A. (2011). Transition probabilities for general birth–

death processes with applications in ecology, genetics, and evolution. J. Math. Biol.,
pages DOI: 10.1007/s00285–011–0471–z.

Desai, M., Fisher, D., and Murray, A. (2007). The speed of evolution and maintenance
of variation in asexual populations. Current biology, 17(5), 385–394.

Drake, J. W., Charlesworth, B., Charlesworth, D., and Crow, J. F. (1998). Rates of
spontaneous mutation. Genetics, 148(4), 1667–1686.

Elowitz, M. B., Levine, A. J., Siggia, E. D., and Swain, P. S. (2002). Stochastic gene
expression in a single cell. Science, 297(5584), 1183–1186.

Finkel, S. E. and Kolter, R. (1999). Evolution of microbial diversity during prolonged
starvation. Proceedings of the National Academy of Sciences of the United States of
America, 96(7), 4023–4027.

Fisher, R. (1930). The genetical theory of natural selection. Clarendon Press.
Gibson, M. A. and Bruck, J. (2000). Efficient exact stochastic simulation of chemical

systems with many species and many channels. Journal Of Physical Chemistry A,
104(9), 1876–1889.

Gillespie, D. T. (1976). General method for numerically simulating stochastic time
evolution of coupled chemical-reactions. Journal of Computational Physics, 22(4),
403–434.

Gillespie, D. T. (1977). Exact stochastic simulation of coupled chemical-reactions.
Journal Of Physical Chemistry, 81(25), 2340–2361.

Gillespie, D. T. (2001). Approximate accelerated stochastic simulation of chemically
reacting systems. Journal Of Chemical Physics, 115(4), 1716–1733.

8

BNB algorithm for evolutionary dynamics

Gillespie, D. T. and Petzold, L. R. (2003). Improved leap-size selection for accelerated
stochastic simulation. Journal Of Chemical Physics, 119(16), 8229–8234.

Gillespie, J. (1984). Molecular evolution over the mutational landscape. Evolution,
pages 1116–1129.

Hallatschek, O. (2011). The noisy edge of traveling waves. Proceedings of the National
Academy of Sciences, 108(5), 1783.

Ismail, M. E. H., Letessier, J., and Valent, G. (1988). Linear birth and death models and
associated Laguerre and Meixner polynomials. Journal Of Approximation Theory,
55(3), 337–348.

Jahnke, T. and Altintan, D. (2010). Efficient simulation of discrete stochastic reaction
systems with a splitting method. Bit Numerical Mathematics, 50(4), 797–822.

Jain, K. and Krug, J. (2007). Deterministic and stochastic regimes of asexual evolution
on rugged fitness landscapes. Genetics, 175(3), 1275–1288.

Karlin, S. and Mcgregor, J. (1958). Linear growth, birth and death processes. Journal
Of Mathematics And Mechanics, 7(4), 643–662.

Kauffman, S. and Levin, S. (1987). Towards a general-theory of adaptive walks on
rugged landscapes. Journal Of Theoretical Biology, 128(1), 11–45.

Kessler, D. A., Levine, H., Ridgway, D., and Tsimring, L. (1997). Evolution on a
smooth landscape. Journal Of Statistical Physics, 87(3-4), 519–544.

Lu, T., Volfson, D., Tsimring, L., and Hasty, J. (2004). Cellular growth and division in
the Gillespie algorithm. Systems Biology, 1(1), 121–128.

Monthus, C. and Bouchaud, J. P. (1996). Models of traps and glass phenomenology.
Journal Of Physics A-Mathematical And General, 29(14), 3847–3869.

Moran, P. (1958). Random processes in genetics. Math. Proc. of the Cambridge Phil.
So., 54(01), 60–71.

Novozhilov, A. S., Karev, G. P., and Koonin, E. V. (2006). Biological applications of
the theory of birth-and-death processes. Briefings In Bioinformatics, 7(1), 70–85.

Pena, M. I., Davlieva, M., Bennett, M. R., Olson, J. S., and Shamoo, Y. (2010).
Evolutionary fates within a microbial population highlight an essential role for
protein folding during natural selection. Molecular Systems Biology, 6, 387.

Press, W. H., Teukolsky, S. A., Vetterling, W. T., and Flannery, B. P. (2007). Numerical
Recipes: The Art of Scientific Computing, Third Edition. Cambridge University
Press, New York.

Rathinam, M. and El Samad, H. (2007). Reversible-equivalent-monomolecular tau: A
leaping method for ”small number and stiff” stochastic chemical systems. Journal
of Computational Physics, 224(2), 897–923.

Rathinam, M., Petzold, L. R., Cao, Y., and Gillespie, D. T. (2003). Stiffness in
stochastic chemically reacting systems: The implicit tau-leaping method. Journal
Of Chemical Physics, 119(24), 12784–12794.

Rouzine, I. M., Wakeley, J., and Coffin, J. M. (2003). The solitary wave of asexual
evolution. Proceedings Of The National Academy Of Sciences Of The United States
Of America, 100(2), 587–592.

Ruiz-Jarabo, C. M., Miller, E., Gomez-Mariano, G., and Domingo, E. (2003).
Synchronous loss of quasispecies memory in parallel viral lineages: A deterministic
feature of viral quasispecies. Journal Of Molecular Biology, 333(3), 553–563.

Templeton, A. R. (1980). The theory of speciation via the founder principle. Genetics,
94(4), 1011–1038.

Tsimring, L. S., Levine, H., and Kessler, D. A. (1996). RNA virus evolution via a
fitness-space model. Physical Review Letters, 76(23), 4440–4443.

Wright, S. (1931). Evolution in Mendelian populations. Genetics, 16(2), 97.
Zhu, T., Hu, Y., Ma, Z.-M., Zhang, D.-X., Li, T., and Yang, Z. (2011). Efficient

simulation under a population genetics model of carcinogenesis. Bioinformatics,
27(6), 837–843.

9

Supporting Information: Fast stochastic algorithm for simulating

evolutionary population dynamics

William H. Mather1,2,3, Je↵ Hasty1,2,3,4, Lev S. Tsimring2,3⇤

1 Department of Bioengineering, University of California, San Diego, CA, USA

2 BioCircuits Institute, University of California, San Diego, CA, USA

3 San Diego Center for Systems Biology, San Diego, CA, USA

4 Molecular Biology Section, Division of Biological Sciences, University of California, San

Diego, CA, USA

⇤ Corresponding author. E-mail: ltsimring@ucsd.edu

Contents

A Details for the generating function solution for a single-species birth/death/mutation

model 1

B Speedup for exact simulations: BNB relative to SSA and ⌧-leap algorithms 3

C Next mutation BNB algorithm 5

C.1 Statement of algorithm . 5
C.2 Comments on the validity of the Next Mutation BNB algorithm 6

D Exact simulations: NK model 7

E Use of BNB as an approximate algorithm 9

E.1 BNB algorithm as an approximation: negligible mutation 9
E.2 BNB algorithm as an approximation: with mutation . 11
E.3 Performance of approximate BNB relative to ⌧ -leap algorithms 11

F Di↵erence of histograms for independently sampled processes 12

A Details for the generating function solution for a single-species

birth/death/mutation model

Define P
n

(t) to be the probability that the system is at state n at time t and that a mutation has not
yet occurred. This probability obeys the master equation

dP
n

dt
= g[(n� 1)P

n�1 � nP
n

] + �[(n+ 1)P
n+1 � nP

n

]� µnP
n

. (S1)

1

2

The generating function

G(s, t) =
1X

n=0

P
n

(t) esn (S2)

satisfies the following first-order equation

@G

@t
=

⇥
(es � 1)g + (e�s � 1)� � µ

⇤ @G
@s

. (S3)

By the method of characteristics, the general solution to Eq. S3 is

G(s, t) = F (z(s, t)) , (S4)

z(s, t) = t+
2

R
arctanh

✓
W � 2ges

R

◆
, (S5)

where F (·) is an arbitrary function, R ⌘
p

(g � �)2 + (2g + 2� + µ)µ and W = g + � + µ. Since we
are interested in generating sample stochastic trajectories, we assume that at time t = 0 the number of
species n0 is given, i.e.

G(s, 0) = esn0 . (S6)

The exact solution for this initial condition, as can be checked by direct substitution, is given by

G(s, t) =

(WS(t)�RC(t))es � 2�S(t)

2gS(t)es �WS(t)�RC(t)

�
n0

, (S7)

where C(t) ⌘ cosh(Rt/2) and S(t) ⌘ sinh(Rt/2). Note that due to linearity of the problem all other
solutions can be written as a superposition of such solutions. This solution can be simplified into a form
that is easier to interpret

G(s, t) = [(p
M

(t)� p
E

(t)) es G1(s, t) + p
E

(t)]n0 (S8)

with

G1(s, t) =
1� p

B

(t)

1� p
B

(t)es
, (S9)

p
M

(t) ⌘ RC(t) + 2�S(t)�WS(t)

RC(t)� 2gS(t) +WS(t)
, (S10)

p
E

(t) ⌘ � (1� p
M

(t))

W � � � g p
M

(t)
, (S11)

p
B

(t) ⌘ gp
E

(t)

�
. (S12)

Here p
M

(t)n0 = G(0, t) is the probability that a mutation has not yet occurred, G1(s, t) is the generating
function for a geometric distribution with probability parameter p

B

(t), and p
E

(t)n0 is the probability
of extinction. The factor es in front of G1(s, t) shifts the geometric distribution upward by 1 unit of
population.

In order to obtain the time of the next mutation t
m

, we need to solve the equation P (t) = r, where r
is a random number uniformly distributed between 0 and 1, and P (t) is obtained from G(s, t) as

P (t) = G(0, t) = p
M

(t)n0 =

✓
RC(t) + 2�S(t)�WS(t)

RC(t)� 2gS(t) +WS(t)

◆
n0

. (S13)

3

However, since P (t) does not reach 0 as t ! 1 due to possible extinction, we have to distinguish two
cases. The solution to P (t) = r,

t
m

= P�1(r)

=
1

R
ln

r1/n0 (R�W + 2g)�W �R+ 2�

r1/n0 (�R�W + 2g)�W +R+ 2�

�
(S14)

exists for ✓
R�W + 2�

R+W � 2g

◆
n0

< r 1 . (S15)

If r is less than this bound, then the system goes extinct before mutating, and the time to extinction can
be computed by inverting the probability of extinction before time t,

P0(t) = G(�1, t) =

2�S(t)

RC(t) +WS(t)

�
n0

. (S16)

Inversion of formula (S16) yields the time of extinction

t
x

= P�1
0 (r) =

1

R
ln

W �R� 2�r�1/n0

W +R� 2�r�1/n0

�
. (S17)

As stated above, this solution only exists for

0 r < P0(1) (S18)

where

P0(1) =

✓
R�W + 2�

R+W � 2g

◆
n0

(S19)

is the asymptotic extinction probability.

B Speedup for exact simulations: BNB relative to SSA and

⌧-leap algorithms

Two of the most common methods to simulate chemical reaction networks are exact SSA [1] and approx-
imate ⌧ -leap methods [2]. We find that when BNB holds exactly, it far outcompetes these alternative
algorithms. The case when BNB does not hold exactly is treated in the next section.

The direct SSA algorithm [1] can generate exacts realizations of birth, death, and mutation reactions.
However, when mutations are rare, direct algorithm spends most of the time implementing birth and
death reactions. This can be contrasted to BNB, where each iteration of the algorithm jumps from one
mutation to the next. The number of steps (“workload”) ⌥ is defined as the total number of simulated
reactions in the system plus the total number of times the population is tested whether it exceeds n

max

(periodically with period �t). The workloads ⌥SSA and ⌥BNB corresponding to the direct SSA and BNB
algorithms, respectively, can be approximated with

⌥SSA =

✓
T

�t

◆
+ (g + � + µ) hniT , (S20)

⌥BNB =

✓
T

�t

◆
+ µ hni T , (S21)

with �t the sampling period, hni a typical population size, T the time of simulation, and the typical
rates g, � and µ = ⌘g for birth, death, and mutation, respectively. Considerable speedup relative to

4

�� �� �� �� 0
5

5.5

6

6.5

7

log�����

lo
g �

��
�
��
�
��
	

����������������

�� �� �� �� 0
5

6

7

8

log����

lo
g �

��
�
��
�
��
	

����
�����������A B

BNB
��	
�

	��
��

Figure S1. Comparison between the workload of the direct SSA (blue) and the BNB algorithm (red).
Dashed lines correspond to the theoretical estimate, Eqs. S20-S21. The corresponding simulations were
done for a linear fitness model with n

max

= 103 (A) and n
max

= 104 (B). Other parameters were
n
min

= n
max

/10, g = 1, � = 0.1, and the total time of simulation T = 105. Mutations were counted
towards the workload when they occurred, but no new species were created for simplicity. For
comparison with the theoretical formulas Eqs. S20-S21 we used the average population
hni ⇡ 0.391n

max

, as derived for a deterministic exponential growth between n
min

= n
max

/10 and n
max

.

0 500 1000 1500 2000
0

5000

10000

15000

population count

fre
qu

en
cy

BNB
������
direct

A B

0 5 10 15
0

20

40

60

inverse time step

ro
ot

 L
2 e

rro
r

BNB
hybrid
1/� error fit

Figure S2. Comparison between the accuracy of ⌧ -leap relative to the exact BNB algorithm. (A)
Using either BNB (red), hybrid ⌧ -leap (blue), or direct SSA(green), pure exponential growth
(n

max

= 1) of a single species without mutation was simulated with initial population = 1 and
parameters g = 1, � = 0.1. A population histogram with bin width 50 and ensemble size 105 is shown
for simulations with time step ⌧ = 0.5, cuto↵ 10, and total time of simulation T = 5. (B) We quantified
the error for di↵erent time steps (inverse of the time step is plotted) by computing the root mean
square di↵erence between the histogram of direct SSA simulation and that of either BNB or the hybrid
⌧ -leap. We normalized this error by the minimal expected statistical deviation (see last Section in this
SI). The di↵erence between ⌧ -leap error and the minimal expected error is well-approximated by best-fit
linear power law, error / ⌧ (blue dashed line).

5

direct simulation can then be expected for the BNB algorithm when g + � � µ. Fig. S1 illustrates
typical results, where the BNB algorithm significantly accelerates simulation relative to SSA when the
mutation rate is low. Note that the “cost” of each step in BNB is somewhat higher than in SSA since
it requires generation of several random numbers as compared to only two uniform random numbers for
SSA. However this cost increase is small compared with significant benefits of jumping over birth and
death reactions for the case of rare mutations.

The workload (number of iterations) ⌥
⌧ -leap for the hybrid ⌧ -leap algorithm [3] can far exceed that

of the BNB algorithm in the case when birth, death, and mutation rates are constant. Ignoring dilution
events, BNB only requires a single iteration to integrate the system between mutations, as assumed in
Eq. S21. The hybrid ⌧ -leap algorithm instead requires that time steps are su�ciently small if a given
accuracy (with scale E) is to be assured. For a large population size, the error of the ⌧ -leap algorithm
tends to be linked to that of a first order Euler method for integration, and the workload then scales
as ⌥

⌧ -leap / 1/E . Accuracy of the method is then proportional to the time step. We indeed find
that simulation accuracy for typical parameters is largely determined by this linear law (see Fig. S2).
The hybrid ⌧ -leap algorithm also assumes that species with population sizes below a certain cuto↵ are
simulated using the direct method, which can increase the workload.

C Next mutation BNB algorithm

C.1 Statement of algorithm

The optimized Next Mutation BNB algorithm as follows.

Algorithm 5

1. Initialize the system with N classes of species at time t = 0. Specify populations of all classes
n
i

, i = 1, ..., N . Each class has its own set of birth, death, and mutation rates g
i

, �
i

, µ
i

. Flag each
class to have its next mutation time updated.

2. For flagged classes, generate random numbers r
i

uniformly distributed between 0 and 1. For each
i = 1, ..., N , generate a next mutation time ⌧

i

= t
i

+ t (t is the current time, t
i

is the duration of
time to the next mutation) using Eq. S14. When Eq. S15 is not satisfied, set ⌧

i

= 1. Store the
current time (time of last sampling) for each such flagged class as T

i

. Unflag all classes.

3. Find the minimum next mutation time ⌧
m

= min(⌧
i

) and the corresponding class i
m

. Update the
time t ! ⌧

m

.

4. Update the population for the mutated class i
m

according to the Algorithm 3, using the duration
since last update (t� T

i

)= (⌧
i

� T
i

) for the variable t
m

.

5. Select the specific mutation that occurs.

6. If the mutation generates a member of a nonexistent class, create a new class with index N+1 with
n
N+1 = 1 and its own set of parameters g

N+1, �N+1, µN+1. Store the index j = N + 1. Otherwise
for the appropriate existing class (index j), update the population according to Algorithm 2 using
the duration since last update (t� T

j

). Add 1 to the population of class j.

7. Flag the classes i
m

and j from Steps 3 and 6, respectively.

8. Return to Step 2 until the algorithm has completed.

9. Finalize the algorithm by sampling the population of all unflagged classes according to Algorithm 2
with duration (t� T

i

) for class index i.

6

As in Algorithm 4 of the main text, the algorithm can be ended at any specific time t⇤. This is done by
jumping to Step 9 after Step 2 when t⇤ < min(⌧

i

) first occurs.

C.2 Comments on the validity of the Next Mutation BNB algorithm

Since the di↵erent classes of species are uncoupled between mutations, the Next Mutation BNB algorithm
supposes that a species class only needs to be sampled just prior to the point when it is influenced by
a mutation. It is relatively straightforward to show that species not involved in this mutation, as either
the origin or the destination of a mutant species, do not need to be sampled.

We are interested in a species class (index i) that starts with a population ñ
i

(T0) = x0 at time T0 and
is known to mutate at a time ⌧̃

i

> T1, where T1 > T0. This is the case in the BNB algorithm when the
next mutation time T1 belonging to some other class is earlier than the next mutation time ⌧̃

i

of class
index i. It is important to understand how the information ⌧̃

i

> T1 influences the probability distribution
of the process described by population ñ

i

(t) and next mutation time ⌧̃
i

. A particular function of interest
is the conditional probability (T2 > T1 > T0)

Pr(ñ
i

(T2) = x2, ⌧̃i > T2 | ñi

(T0) = x0, ⌧̃i > T1). (S22)

This function encodes how the information ⌧̃
i

> T1 influences statistics at a later time T2 (see [4] for use
of this function in a related context). Straightforward manipulation reveals

Pr(ñ
i

(T2) = x2, ⌧̃i > T2 | ñi

(T0) = x0, ⌧̃i > T1)

= Pr(ñ
i

(T2) = x2, ⌧̃i > T2, ñi

(T0) = x0, ⌧̃i > T1) / Pr(ñ
i

(T0) = x0, ⌧̃i > T1),

= Pr(ñ
i

(T2) = x2, ⌧̃i > T2 | ñi

(T0) = x0) · Pr(ñ
i

(T0) = x0) / Pr(ñ
i

(T0) = x0, ⌧̃i > T1)

by definition of a conditional probability. Thus

Pr(ñ
i

(T2) = x2, ⌧̃i > T2 | ñi

(T0) = x0, ⌧̃i > T1) =
Pr(ñ

i

(T2) = x2, ⌧̃i > T2 | ñi

(T0) = x0)

Pr(⌧̃
i

> T1 | ñi

(T0) = x0)
. (S23)

Equation S23 demonstrates that the conditional probability in Eq. S22 can be derived by two simpler
probabilities that do explicitly condition on the information ⌧̃

i

> T1.
Nothing has so far been assumed concerning the statistical independence of species i from other

quantities, e.g. T1. We now assume statistical independence, such that the conditional probabilities on
the right hand side of Eq. S23 can be expressed using the results of the single species statistical formalism
used to derive the BNB algorithm. The resulting probabilities can be used to show that the Next Mutation
BNB algorithm generates the correct probabilities between mutations. For example, Eq. S23 in the form

Pr(ñ
i

(T2) = x2, ⌧̃i > T2 | ñi

(T0) = x0) =

Pr(ñ
i

(T2) = x2, ⌧̃i > T2 | ñi

(T0) = x0, ⌧̃i > T1) · Pr(⌧̃i > T1 | ñi

(T0) = x0) (S24)

indicates that sampling the population at a time T2 < ⌧̃
i

without knowing ⌧̃
i

> T1 generates the correct
probabilities adjusted by the fixed scale Pr(⌧̃

i

> T1 | ñi

(T0) = x0), which is precisely the chance that we
should observe ⌧̃

i

> T1 in the BNB algorithm.
The remaining di�culty in demonstrating validity of the Next Mutation BNB algorithm is in ensuring

that statistical independence holds among species in the time between mutations. Since the only coupling
is at discrete mutation events, it is intuitively clear that all species that are initially independent (in the
sense of Eq. S23) remain independent if the species are not involved in the next mutation. We then sample
only the mutating species and the species receiving the new mutant cell, such that the next mutation
dynamics of the two species again become independent conditional on knowing the outcome of the last
mutation.

7

time

sp
ec

ie
s

in
de

x

0 2x104 4x104

10

20

30

time

sp
ec

ie
s

in
de

x

0 2x104 4x104

10

20

30

C D time

sp
ec

ie
s

in
de

x

0 2x104 4x104

10

20

30

time

sp
ec

ie
s

in
de

x
0 2x104 4x104

10

20

30

A B

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

Figure S3. Results for the NK model with a smooth fitness landscape (N = 32,K = 0, �t = 0.1,
✏ = 10�3, ⌘ = 10�3, n

min

= n
max

/10). Single trajectories are shown for n
max

= 103 (A) and
n
max

= 104 (B), where species with the same fitness (of the same class) have been identified for
purposes of visualization. Species index is equal to one plus the sum of bits. Ensemble mean
probabilities from 800 realizations corresponding to (A) and (B) are shown in (C) and (D), respectively.

m
ea

n
sp

ec
ie

s
in

de
x

st
ea

dy
 s

ta
te

 s
pe

ci
es

 in
de

x

A B

0 2x104 4x1040

10

20

30

time
3 3.5 4 4.5 5

15

20

25

30

log10 nmax

Figure S4. Evolution velocity substantially slows down and stalls as the system approaches the fitness
maximum. (A) Plot of the ensemble mean index from Fig. S3C (red) and Fig. S3D (blue). The
long-time ensemble mean species index for each population apparently tends towards a value less than
that of the fitness optimum, indicating a balance between the negative entropic velocity and the
positive fitness gradient velocity. (B) Estimate of the steady state species index for di↵erent population
sizes. Trajectories of duration 2⇥ 106 were recorded, and the time-averaged mean species index was
reported (blue dots). A simple model (red) was compared by first fitting the velocity data in Fig. 2 of
the main text to a smooth cubic polynomial of log10 nmax

via least squares minimization on the range
n
max

 105, and then using this estimate for velocity in a heuristic model (see Eq. S29).

D Exact simulations: NK model

A similar investigation as for the linear model in the main text was done for an NK model [5]. In
the model, a species m is characterized by its “genome” that is a binary string of length N , with bits
b
m,j

2 {0, 1}, j = 1, ..., N . The fitness is determined by the state of all N bits as a sum of contributions
from all N loci. However, the contribution from each locus in general may depend on the states of K
other loci. If K = 0, each bit contributes to the fitness independently, which corresponds to the smooth

8

A B

time

su
m

 o
f b

its
0 1x105 2x105

0

10

20

30

time

su
m

 o
f b

its

0 1x105 2x105
0

10

20

30

0

0.2

0.4

0.6

0.8

1

0

0.05

0.1

0.15

0.2

Figure S5. Simulation of a NK model with a rugged landscape N = 32,K = 1 (see Eq. S30). (A)

Fraction of the population with a given bit sum (
P

N

j=1 bm,j

) for a single realization of the model with
A = �1, B = 2. These parameters provide a mildly rugged landscape that requires evolving populations
to exhibit suboptimal fitness fluctuations in order to evolve to optimal fitness. It is clear that the sum
of bits defining the state tend to be even, while odd sums typically indicate a suboptimal fluctuation. In
contrast to smooth models, long residence times for a species tend to be observed. (B) The punctuated
nature of single trajectories is less apparent for the bit sum probability distribution for an ensemble of
800 realizations. Other parameters for the model are ✏ = 10�2, ⌘ = 10�3, n

min

= n
max

/10, n
max

= 104,
and �t = 0.1.

landscape with a unique maximum, whereas K = N � 1 corresponds to the extremely rugged landscape,
such that every N -bit string corresponds to a di↵erent, often chosen at random, fitness value. At each
mutation event, one of the bits (chosen uniformly at random) in the mutated species is flipped, i.e. with
one mapped to zero or zero mapped to one.

We simulated evolution of a finite cell population in the NK model on a smooth landscape (K = 0),

where the growth rate only depends on the sum X
m

=
P

N

j=1 bm,j

of the N bits. The evolutionary model
is defined by the following birth, death, and mutation rates

g
m

= 1 + ✏
NX

j=1

b
m,j

, (S25)

�
m

= 0.1 , (S26)

µ
m

= ⌘ g
m

. (S27)

As before, we randomly sample the population once it reaches the pre-defined size n
max

to reduce it to
n
min

.
Representative results for N = 32 in Fig. S3 show waves of evolving species approaching the fittest

state (all bits set to one). In contrast to the linear fitness model, the wave velocity is seen to depend
on the mean fitness of the system (mean number of ones in the genome) due to an entropic e↵ect (see
Fig. S4). This is linked to the fact that a newly mutated species that arises from a progenitor species
with a total X

m

of 1-bits has a probability (N �X
m

)/N to increase to a total X
m

+ 1 of 1-bits and
a probability X

m

/N to decrease to a total X
m

� 1 of 1-bits. This bias tends to prevent species from
approaching the fitness maximum X = N .

In the absence of a fitness gradient (✏ = 0), it can be shown that this mutational bias leads to a
state-dependent velocity v

µ

(X
m

) that is the rate of change for the average total of 1-bits hX
m

i [6]

v
µ

(X
m

) = µ

✓
1� 2 hX

m

i
N

◆
. (S28)

This can be compared to the velocity v0 for populations satisfying X
m

⇡ N/2 in the presence of a fitness
gradient, where the mutational bias velocity is small relative to the velocity due to selection. The velocity

9

v0 then should be predictable from a corresponding linear fitness model. It may happen then that the
velocity due to selection can be counteracted by the velocity due to mutational bias, allowing the sum of
bits to relax to an asymptotic mean value hX

m

i1. A simple ad hoc model for the steady state condition
supposes that v0 balances v

µ

at steady state, leading to the condition (assuming v0 > 0)

hX
m

i1 = min

N

2

✓
1 +

v0
µ

◆
, N

�
. (S29)

We show in Fig. S4B that our results for wave velocity in linear fitness can be used in Eq. S29 to make
nontrivial predictions for the apparent steady state value hX

m

i1.
A more rugged landscape can be created when the fitness depends on interactions between bits

(K > 0). We introduce a mildly rugged K = 1 model in which the birth rate depends on the state of bits
with index separated by N/2

g
m

= 1 + ✏

0

@A
NX

j=1

b
m,j

+B
NX

j=1

b
m,j

b
m,j

⇤

1

A , (S30)

where j⇤ = [(j � 1 + (N/2))modN] + 1. It can be shown for negative A and B > |A| that there may be
up to N/2 barriers separating the fitness optimum from an initial condition. At each of these barriers,
the evolving population must transiently contain one suboptimal species before a fitter species can be
created. An evolving population can be stuck in these local fitness optima for long times, significantly
slowing the speed of evolution. Results for such a model are presented in Fig. S5.

E Use of BNB as an approximate algorithm

Propensities may deviate from the linear law assumed in the BNB algorithm, but the BNB algorithm may
still approximate a system with non-constant birth, death, and mutation rates by evolving the system
with a BNB step restricted to a short duration t. Rates are then updated using the new populations
before integrating the system with another BNB step, and so on. Validity of this process depends on
self-consistency of the assumptions in the BNB algorithm, which we discuss presently.

A major assumption in the BNB algorithm is that propensities for reactions are independent of other
species and proportional to population. Suppose for example that the birth rate g(~n) is some function of
the set of populations ~n. Then, for some starting population ~n0 and some deviation from this population
~�n, the propensity a

g,i

(~n) = g
i

(~n)n
i

for the birth rate of population i has the deviation from the BNB
assumption

�a
g,i

(~n0 + ~�n) = g
i

(~n0 + ~�n) (n0,i +�n
i

)� g(~n0) (n0,i +�n
i

),

=
X

j

@g
i

@n
j

(~n0)n0,i �n
j

+O(�n2). (S31)

We argue that the birth propensity error in Eq. S31 (the argument extends to death and mutation
propensities) can be made small if BNB is applied for short durations.

E.1 BNB algorithm as an approximation: negligible mutation

The approximate short-time BNB algorithm can be most readily analyzed in the case that mutation is
a negligible e↵ect. The general case with mutations is considered in the next section. The approach to
evaluation of the error follows that in Ref. [7].

10

If population starts in the state ~n0, and if the mutation rate is temporarily considered negligible, then
it can be shown that Eq. S31 give the statistics for the deviation of the propensity after some time t

h�a
g,i

i
t

⇡
X

j

@g
i

@n
j

(~n0)n0,i h�n
j

i
t

, (S32)

⌦
�a2

g,i

↵
t

⇡
X

j

✓
@g

i

@n
j

(~n0)

◆2

n2
0,i

⌦
�n2

j

↵
t

=
X

j

✓
@g

i

@n
j

(~n0)

◆2

n0,i

✓
g
j

+ �
j

g
j

� �
j

◆
(h�n

j

i
t

+ n0,j) h�n
j

i
t

, (S33)

where
h�n

i

i
t

= n0,i(e
(gi(~n0)��i(~n0))t � 1), (S34)

and h·i
t

indicates an average over a BNB step with time step t. Equation S33 depends on h�n
i

�n
j

i
t

= �
i,j

⌦
�n2

i

↵
t

for a BNB step, where �
i,j

is the Kronecker delta. Analogous expressions can be straightforwardly written
for changes in propensity for the death reactions.

An appropriate step size may be chosen by ensuring that a relative change in the propensity, given
by Eqs. S32–S33, is much smaller than the zeroth order mean total propensity, which we define as the
sum of birth and death mean propensities

ha0,i(t)i = n0,i (gi(~n0) + �
i

(~n0)) e
(gi(~n0)��i(~n0))t. (S35)

A step size t may be chosen to ensure that the relative error in the propensity is kept of order ✏

✏ ha0,ii
t

� | h�a
g,i

i
t

|, (S36)

✏2 ha0,ii2
t

�
⌦
�a2

g,i

↵
t

. (S37)

If the rates change su�ciently slowly with the population, it can be checked that Eqs. S36–S37 predict
large times t for an iteration.

It is instructive to examine the case when the relative change in the population is small, i.e. (g
i

+ �
i

)t ⌧ 1.
In this limit, a step size t = ⌧ can be readily expressed that satisfies Eqs. S36–S37 for each propensity.
The infinitesimal t versions of Eqs. S32–S33 are

h�a
g,i

i
t

⇡ µ
g,i

t, (S38)
⌦
�a2

g,i

↵
t

⇡ �2
�,i

t, (S39)

where

µ
g,i

⌘
X

j

@g
i

@n
j

(~n0)n
2
0,i (gi(~n0)� �

i

(~n0)), (S40)

�2
g,i

⌘
X

j

✓
@g

i

@n
j

(~n0)

◆2

n3
0,i (gi(~n0) + �

i

(~n0)) (S41)

set the scale of variation by mean drift terms and di↵usive terms, respectively. Analogous expressions
exist for death. Application of Eqs. S36–S37 leads to a choice of su�ciently small time steps that keeps
the variation small for propensities that use the rates g

i

and �
i

⌧
g,i

= min

"
✏n0,i(gi + �

i

)

|µ
g,i

| ,
✏2n2

0,i(gi + �
i

)2

�2
g,i

#
, (S42)

⌧
�,i

= min

"
✏n0,i(gi + �

i

)

|µ
�,i

| ,
✏2n2

0,i(gi + �
i

)2

�2
�,i

#
. (S43)

11

A good overall step size is the minimum of all such step sizes

⌧ = min
i

[⌧
gi , ⌧�i] . (S44)

The approximate step size in Eq. S44 is useful when comparing to other algorithms that require small
times t for an integration step. It should be emphasized that the full expressions Eqs. S32–S33 should
provide a better estimate of the error outside of the small t regime.

E.2 BNB algorithm as an approximation: with mutation

The analysis of error and step sizes above can be generalized to the case with mutation, where the BNB
algorithm may spawn one or more mutants during the time step of size t. The primary di↵erence in this
case is that the expression for deviation of propensities should be made conditional on a mutation event
not yet occurring, which is tied to the single species generating function (G(s, t)/G(0, t), with G(s, t)
from the main text) of the conditional distribution. For simplicity, we assume that the rate of mutation
µ
i

of species i satisfies µ
i

= ⌘
i

g
i

, where 0 < ⌘
i

< 1. Thus, fixing the relative error of the birth propensity
to be ✏ is su�cient to keep the relative error in mutation propensity to be less than this value.

It can then be shown that the the updated equations for Eqs. S40–S41 are the same to lowest order
in t. If ⌘

i

⌧ 1 (often the case), then Eqs. S42–S44 also hold. The discussion in the case with negligible
mutation in this way provides a good estimate for the time step with slow mutation, as expected.

Outside of the small t limit, i.e. when (g + �)t ⌧ 1 does not hold, full expressions analogous to those
in Eqs. S32–S33 should be used. These depend on the full form of

hni
t

=

@

@s

G(s, t)

G(0, t)

�

s=0

, (S45)

⌦
�n2

↵
t

+ hni2
t

=

@2

@s2
G(s, t)

G(0, t)

�

s=0

, (S46)

which can be given analytically.

E.3 Performance of approximate BNB relative to ⌧-leap algorithms

The approximate ⌧ -leap algorithm is often used to accelerate stochastic simulations of chemical reaction
networks [2]. It is based on the assumption that propensities for birth, death, and mutation are roughly
constant for some time duration t, providing an corresponding generating function solution G

⌧ -leap,i for
species i

G
⌧ -leap,i(s, t) = exp

⇥
�n0µi

t + n0git (e
s � 1) + n0�it

�
e�s � 1

�⇤
, (S47)

which can be used to construct a ⌧ -leap update

1. Generate the time t̃ = �(
P

i

n0,iµi

)�1 ln (r̃), with uniform random number r̃ 2 [0, 1]. If t̃ < ⌧ , where
⌧ is a time step small enough to keep a certain relative error, then flag that a mutation occurs after
a time duration t̃. Set t = min(t̃, ⌧).

2. Increment the time and update the populations to n
i

= n0,i +P1,i(n0,igit)�P2,i(n0,i�it), where all
of P1,i and P2,i are independent Poisson processes. For self-consistency, n

i

should be nonnegative.

3. If a mutation has been flagged, create a new mutant from species i with probability n0,iµi

/(
P

j

n0,jµj

).

Accuracy of the ⌧ -leap algorithm depends sensitively on the step size of the algorithm. One prescription
is to bound the relative error as in Eqs. S36–S37, as has been explored previously [7]. This leads to the

12

modified definitions to be used in Eqs. S42–S44

µ
g,i

⌘
X

j

✓
@g

i

@n
j

(~n0)n0,i + g
i

(~n0)�i,j

◆
n0,i (gi(~n0)� �

i

(~n0)) (S48)

�2
g,i

⌘
X

j

✓
@g

i

@n
j

(~n0)n0,i + g
i

(~n0)�i,j

◆2

n0,i (gi(~n0) + �
i

(~n0)) (S49)

and analogous definitions for death and mutation. Equations S48–S49 and corresponding equations can
be substituted into Eqs. S42–S44 to provide the appropriate ⌧ -leap time step with relative error ✏.

In cases when elementary reactions are close to first order (as in population dynamics), the approx-
imate BNB algorithm can perform much better than ⌧ -leap and its analogs. Comparing the small time
limits Eqs. S40–S41 to Eqs. S48–S49 allows some insight into how BNB compares to ⌧ -leaping. For
instance, it can be shown from these equations that BNB will have larger time step candidates ⌧

g,i

than
those for ⌧ -leap if both

������

X

j

@g
i

@n
j

(~n0)n0,i + g
i

(~n0)

������
>

������

X

j

@g
i

@n
j

(~n0)n0,i

������
, and (S50)

����
@g

i

@n
i

(~n0)n0,i + g
i

(~n0)

���� >

����
@g

i

@n
i

(~n0)n0,i

���� (S51)

which imply

X

j

@g
i

@n
j

(~n0) > �g
i

(~n0)

2n0,i
, and (S52)

@g
i

@n
i

(~n0) > �g
i

(~n0)

2n0,i
(S53)

Similar relations hold for death and mutation. Thus, weakly interacting species are better approximated
by BNB for su�ciently slowly changing rates. For a single species, it can be shown that the boundary
where BNB has similar accuracy as ⌧ -leap implies a rate / 1/

p
n and propensity /

p
n.

F Di↵erence of histograms for independently sampled processes

In the main text, we used the di↵erence of histograms of a population count as a measure of error for the
process. We demonstrate how these statistics behave in the following.

A realization of a histogram for our purposes is defined by a total of N independent observations that
are distributed to bins with probability ⇢

i

for the bin with index i. This realization provides bin counts ã
i

for bin i, with
P

i

ã
i

= N . It follows that the ã
i

’s are distributed according to a multinomial distribution
with total number N and probabilities ⇢

i

for bin i. The moments of the multinomial distribution can be
approached via its generating function

G({s
i

}) =

X

i

⇢
i

esi

!
N

(S54)

13

which leads to the averages

µ
i

⌘ hã
i

i = lim
sk!0,8k

@

@s
i

G = ⇢
i

N (S55)

C
ij

⌘ hã
i

ã
j

i � hã
i

i hã
j

i = lim
sk!0,8k

@

@s
i

@

@s
j

G� hã
i

i hã
j

i

= (�
ij

⇢
i

� ⇢
i

⇢
j

) N (S56)

with �
ij

the Kronecker delta. For small ⇢
i

, C
ij

is well approximated by

C
ij

⇡ �
ij

N⇢
i

, small ⇢
i

, ⇢
j

, (S57)

which is the same as if each ã
i

was independently Poisson distributed with mean value N⇢
i

.
Consider two independent histograms with bin counts ã1,i and ã2,i that have respective bin probabili-

ties ⇢1,i and ⇢2,i. Furthermore, the total number of observations for each histogram is N , i.e.
P

i

ã1,i = N
and

P
i

ã2,i = N . We are interested in statistics of the error

Ẽ =
X

i

(ã1,i � ã2,i)
2
. (S58)

In particular, the mean of the error is

D
Ẽ
E

= E0 +N2
X

i

(⇢1,i � ⇢2,i)
2, (S59)

E0 =
X

i

[N⇢1,i(1� ⇢1,i) +N⇢2,i(1� ⇢2,i)] , (S60)

where E0 is the baseline expected error due to random fluctuations alone. Note that for small probabilities
⇢
i

, this is approximately

E0 ⇡
X

i

[N⇢1,i +N⇢2,i] = 2N , (small ⇢
i

), (S61)

which is independent of the distributions.
For purposes of normalization in the main text, we divide E by the baseline E0 to get an error

� =
1

E0

X

i

(ã1,i � ã2,i)
2
, (S62)

which has the average value

h�i = hEi
E0

= 1 +
N2

P
i

(⇢1,i � ⇢2,i)2

E0
. (S63)

For small probabilities ⇢
i

, the expected value for � becomes

h�i ⇡ 1 +
N

2

X

i

(⇢1,i � ⇢2,i)
2 , (small ⇢

i

) (S64)

which only depends on the square di↵erence between bin probabilities.
The measurement of � depends on an estimate for E0. We do this by setting ⇢1,i ⇡ ã1,i/N and

⇢2,i ⇡ ã2,i/N and then calculating E0 by Eq. S60.

14

References

1. Gillespie DT (1977) Exact stochastic simulation of coupled chemical-reactions. Journal Of Physical
Chemistry 81: 2340–2361.

2. Gillespie DT (2001) Approximate accelerated stochastic simulation of chemically reacting systems.
Journal Of Chemical Physics 115: 1716–1733.

3. Zhu T, Hu Y, Ma ZM, Zhang DX, Li T, et al. (2011) E�cient simulation under a population genetics
model of carcinogenesis. Bioinformatics 27: 837–843.

4. Gibson MA, Bruck J (2000) E�cient exact stochastic simulation of chemical systems with many
species and many channels. Journal Of Physical Chemistry A 104: 1876–1889.

5. Kau↵man S, Levin S (1987) Towards a general-theory of adaptive walks on rugged landscapes.
Journal Of Theoretical Biology 128: 11–45.

6. Tsimring LS, Levine H, Kessler DA (1996) RNA virus evolution via a fitness-space model. Physical
Review Letters 76: 4440–4443.

7. Gillespie DT, Petzold LR (2003) Improved leap-size selection for accelerated stochastic simulation.
Journal Of Chemical Physics 119: 8229–8234.

