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Accurate information transmission
through dynamic biochemical
signaling networks
Jangir Selimkhanov,1* Brooks Taylor,1* Jason Yao,2 Anna Pilko,2 John Albeck,3

Alexander Hoffmann,4,5 Lev Tsimring,4,6 Roy Wollman2,4,7†

Stochasticity inherent to biochemical reactions (intrinsic noise) and variability in cellular
states (extrinsic noise) degrade information transmitted through signaling networks.
We analyzed the ability of temporal signal modulation—that is, dynamics—to reduce
noise-induced information loss. In the extracellular signal–regulated kinase (ERK), calcium
(Ca2+), and nuclear factor kappa-B (NF-kB) pathways, response dynamics resulted in
significantly greater information transmission capacities compared to nondynamic
responses. Theoretical analysis demonstrated that signaling dynamics has a key role
in overcoming extrinsic noise. Experimental measurements of information transmission
in the ERK network under varying signal-to-noise levels confirmed our predictions and showed
that signaling dynamics mitigate, and can potentially eliminate, extrinsic noise–induced
information loss. By curbing the information-degrading effects of cell-to-cell variability,
dynamic responses substantially increase the accuracy of biochemical signaling networks.

T
he role of biological signaling networks
is to reliably transmit specific information
about the extracellular environment to
downstream effectors, allowing the cell to
adjust its physiological state to changing

conditions. The stochasticity of molecular inter-
actions that underlies various forms of “noise” in
biological systems can interfere with signal trans-
duction and degrade the transmitted information.
How signaling networks perform their core func-
tions in the presence of noise is a fundamental
question. Information-theoretic approaches allow
estimation of the maximal possible information
transmission capacity of noisy biochemical net-
works (1–11). Previous applications of suchmethods
to the analysis of signaling networks suggested
that as a result of noise, cells lose most of the
information about the concentration of ligands
(12–14). Thus far, the information-theoretic analy-
ses of signaling networks have been based on
scalar measurements performed at a single time
point. However, the information on activating
ligands is often encoded using a dynamic signal
represented by a multivariate vector that con-
tains a single cell’s response at multiple time
points (15–18).

To test the hypothesis that dynamic responses
contain more information than static responses,
we performed single live-cell measurements of
three key signaling pathways (Fig. 1): extra-
cellular signal–regulated kinase (ERK), calcium
(Ca2+), and nuclear factor kappa-B (NF-kB) [sup-
plementary materials (SM) section 1.1]. Fully auto-
mated computational image analysis (SM section
1.2) allowed us to measure the response of 910,121
individual live cells (figs. S1 to S6 and tables S1
to S3). The large sample size was instrumental
for analyzing high-dimensional multivariate re-
sponses. In all three pathways, there was sub-
stantial variability within the dynamic (Fig. 1, C
to E) and nondynamic (Fig. 1F) single-cell re-
sponses across multiple concentrations of ac-
tivating ligands.
To analyze the implications of noise on infor-

mation loss, we used an information-theoretic
approach to calculate the information transmis-
sion capacity of a dynamic signaling network.
The information transmission capacity [also re-
ferred to as channel capacity (19)] is measured as
the maximal possible mutual information be-
tween the measured response and the activating
ligand concentration. To calculate the mutual in-
formation between a dynamic response (a vector)
and the ligand concentration (a scalar), we ex-
panded on a previously described algorithm (14).
The algorithm uses continuous multidimensional
response data and a k–nearest-neighbor approach
to estimate the conditional probability density for
each cell’s response (SM section 2). We thus es-
timated the information transmission capacity of
the dynamic response and of several types of
static responses. For all single–time point static
scalar responses, we found transmission capacity
(<1 bit) (12, 13) (Fig. 2A). However, across all three
signaling pathways, the dynamic response had
significantly higher information transmission

capacity than several scalar responses previ-
ously described (20, 21) (Fig. 2, B and C, Student’s
t test, P < 0.05 for all comparisons, table S6).
These estimates should be considered as lower
bounds because they do not exclude variability
resulting from experimental imperfections.
To elucidate the origins of the enhanced in-

formation transmission capacity of dynamic sig-
naling responses, we developed a mathematical
theory using information-theoretic formalism
(SM section 3). The theory explicitly accounts
for the information-degrading effects of intrin-
sic and extrinsic noise sources in the context of
multivariate responses. Intrinsic noise adds to
uncertainty in all dimensions (i.e., time points)
independently from one another. In contrast,
the extrinsic variability in cellular states produces
fluctuations that are constrained by the signaling
network that generates the dynamics. Therefore,
the fluctuating components generated by extrin-
sic noise at different time points are determinis-
tically dependent on one another. As a result,
intrinsic and extrinsic noise sources have differ-
ent effects on the information transmission ca-
pacity of multivariate responses. In the case of
purely intrinsic noise, additional measurements
increase the information logarithmically because
of simple ensemble averaging (12). In the case
of purely extrinsic noise, a sufficient number of
dynamical measurements can provide complete
information about the a priori uncertain internal
state of the cell and therefore lead to a substan-
tial gain in the information about the activating
ligand (Fig. 3A).
To test our analytical prediction that the mul-

tivariate dynamic response can completely elim-
inate the information loss that results from
introduction of extrinsic noise (SM section 3),
we used computer simulations of ERK responses
based on a published kinetic model (SM sec-
tion 4.1) (22) (fig. S15). We generated sets of
simulated ERK activity trajectories in response
to an increasing number of ligand concentrations.
We varied model values for ERK and mitogen-
activated protein kinase kinase (MEK) according
to a uniform distribution (T20% mean value) to
mimic extrinsic noise and measured the infor-
mation transmission capacity. Our analysis sup-
ported the analytical prediction and showed that
whereas the univariate response, based on max-
imal ERK dynamics, had limited information
transmission capacity, the dynamic multivariate
response can transmit complete information about
ligand concentration (Fig. 3B). An intuitive dem-
onstration for the limitation of univariate re-
sponse and the ability of multivariate response
to overcome extrinsic noise is shown in Fig. 3,
C and D. Superficially, the trajectories of two
populations of simulated responses of ERK ac-
tivity to two input concentrations of epidermal
growth factor (EGF) appear overlapping (Fig. 3C),
but in fact, they are completely separable when
considering joint distributions (23). Plotting
the distribution of ERK activity at t = 9 and t =
24 min on a two-dimensional (2D) plane (Fig.
3D) shows that the responses to a single varied
parameter input lies on a one-dimensional (1D)
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Fig. 1. Single-cell measurement of the dynamic response of ERK, Ca2+, and
NF-kB. (A) Overview of single-cell data analyzed in this work. (B) Examples of
single-cell response dynamic trajectories. (C toE) Temporal histogramsof several
representative dosages for ERK (C), Ca2+ (D), and NF-kB (E). Color intensity
reflects the probability density of a cellular response magnitude at each time
point. Yaxis in (B) to (E) is the same for each pathway and is in arbitrary units
(AU), representing the Förster resonance energy transfer (FRET) to cyan

fluorescent protein (CFP) ratio reported by the EKARev ERK biosensor (C),
intensity of Ca2+ indicator dye Fluo-4 (D), and ratio of nuclear to cytoplasmic
localization of an enhanced yellow fluorescent protein (EYFP)–p65 reporter
(E). (F) Violin plot of the maximally separable static response in the three
signaling pathways. Shape width shows response distribution (areas are
equal), and point is the median response in each condition. EGF, epidermal
growth factor; ATP, adenosine triphosphate; LPS, lipopolysaccharide.

Fig. 2. Information transmission capacity of static
and dynamic ERK, Ca2+, and NF-kB responses.
(A) Information transmission capacity calculated
from static scalar response distribution based on
single–time point measurements. (B) Information
transmission capacity calculated from multivariate
dynamic responses as a function of the dimension
of the multivariate vector. The multivariate vector
was subsampled using a uniform grid centered on
the middle time point (fig. S19). (C) Comparison
of the multivariate vector (V) measurement to the
following scalar responses: maximum response am-
plitude (A), maximum response time (T), maximal
rate of response (D), ratio of maximum response
amplitude to initial response amplitude (R). Error
bars are SEMs from six biological replicates for ERK
and four for Ca2+, and SDs from five jackknife itera-
tions for NF-kB (tables S1 to S3). The multivariate
vector information transfer was significantly greater
than all scalar measures (P < 0.05, Student’s t test,
table S6).
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curve within a 2D space. The two 1D manifolds
for different inputs are completely separated
from each other (inset), but overlap consider-
ably in any 1D projection. This simple example
demonstrates how the extrinsic variability of a
single parameter can in principle be completely
eliminated with measurements from only two
time points.
The accuracy of a response can be character-

ized by its signal-to-noise ratio (SNR). The mu-
tual information and the system’s SNR are related;
however, this relationship is strongly affected by
the noise properties (intrinsic versus extrinsic)
and the type of the response. Our analytical the-
ory predicts a different relationship between
mutual information and SNR for three different
types of responses: (i) scalar responses that do
not distinguish between intrinsic and extrinsic
noise; (ii) multivariate responses without any
dynamic component (redundant measurements)
that can only reduce intrinsic noise; and (iii)
dynamic responses that combine the benefits

of redundant measurements with efficient miti-
gation of extrinsic variability. We varied the SNR
in the ERK network by partial inhibition of the
ERK kinase MEK with six different dosages of
the inhibitor U0126. At each MEK inhibition
level, we measured ERK response to eight EGF
levels. A total of 48 conditions were measured
in four biological replicates (fig. S23). At each
MEK inhibitor level, we calculated the mutual
information and the SNR from single-cell re-
sponses (SM section 4.3.1). In total, Fig. 4 con-
tains 535,107 cell responses (tables S4 and S5).
As expected, for a scalar response, the formula
relating the mutual information and the overall
SNR is in very good agreement with our exper-
imental measurements. The theoretical predic-
tion of mutual information for the redundant
measurement case requires knowledge of intrinsic–
to–extrinsic noise ratio (IER). IER was estimated
in two ways: by (i) quantifying the fluctuations
in the later (quasistationary) portion of the re-
sponse time series of our ERK data (fig. S21A)

(ii) using data for repeated measurements of
single-cell responses (24) (fig. S21B). The pre-
dicted mutual information based on redundant
responses required IER values that are two to
four orders of magnitude higher than experimen-
tally estimated IER values (SM section 4.3.3)
(fig S17). In contrast, the measured mutual in-
formation values were in good agreement with
the theoretical prediction for a dynamic response
based on a computational ERK model (SM sec-
tion 4.1) (fig. S18). Overall, this analysis demon-
strates that the substantial information gain from
multivariate measurements is indeed the direct
result of the dynamic nature of ERK response.
The robustness of biological systems is epito-

mized by their ability to function in the presence
of a large variability in cellular states (25, 26).
Signaling dynamics allow biochemical networks
to mitigate variability in the cellular state and
thereby maximize the information transmission
capacity of signaling networks. Although the
theory and observations presented here focus on
the information transmission capacity of the dy-
namics of a single signaling molecule, the ex-
tension of our analysis to the case of multiple
signaling molecules responding to one ligand is
straightforward. Not all of the information con-
tained in the dynamical responses may actually
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Fig. 3. Theoretical decomposition of information loss caused by intrinsic and extrinsic noise.
(A) Graphical representation of the analytical expression for the gain in mutual information from
overcoming intrinsic (cyan) and extrinsic (magenta) noise sources obtained from random linear
Gaussian inputs and outputs with three parameters (19). (B) Information transmission capacity of
dynamic (orange) and static (maximal response, purple) responses calculated using simulated
trajectories from the computational model of ERK (22) with only the extrinsic noise contributing to
cell response variability. (C) Example of ERK trajectory variability for two different inputs levels (red
and blue). Variability was generated using a uniform distribution of a single parameter, MEK values,
that was varied by T20%. (D). Two-dimensional histogram (center) and marginal distributions (left
and bottom) for the two input levels (shown in red and blue) at two time points (t = 9 and 24 min)
from the trajectories in (C). Because only a single parameter was varried, the responses vary on a 1D
curve. As a result, although the univariate marginal distributions show substantial response overlap,
the 2D distribution shows completely separated response levels (inset).
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Fig. 4. Measured information gain is a result
of ERK dynamics’ ability to mitigate extrinsic
noise. Experimental measurement of the mutual
information between ERK response and EGFmea-
sured as a function of the response signal-to-noise
ratio (SNR). Each marker represents calculations
of SNR and mutual information from the dynamic
(dot) and maximal scalar (cross) responses of cells
from an eight-well dose-response experiment. Data
shown are calculated based on 535,107 single-cell
responses from 29 experiments with six doses of
MEK inhibitor U0126 (tables S4 and S5). Lines
represent theoretical predictions of the mutual
information as a function of SNR for three types
of responses: static scalar (red line), redundant
measurements where the multivariate response
has no dynamics (dark and light blue lines) cal-
culated based on two independent estimates of
IER (19) (fig. S21), and dynamic response (orange)
that can mitigate both intrinsic and extrinsic noise.
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be used by cells. Yet, because reliable informa-
tion transmission is a fundamental function of
cellular signaling networks, it is plausible that
evolutionary pressures shaped the cellularmachin-
ery to maximize the reliable decoding of multi-
variate dynamic signals.
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ONCOGENE REGULATION

An oncogenic super-enhancer formed
through somatic mutation of a
noncoding intergenic element
Marc R. Mansour,1,2 Brian J. Abraham,3* Lars Anders,3* Alla Berezovskaya,1

Alejandro Gutierrez,1,4 Adam D. Durbin,1 Julia Etchin,1 Lee Lawton,3

Stephen E. Sallan,1,4 Lewis B. Silverman,1,4 Mignon L. Loh,5 Stephen P. Hunger,6

Takaomi Sanda,7 Richard A. Young,3,8† A. Thomas Look1,4†

In certain human cancers, the expression of critical oncogenes is driven from large
regulatory elements, called super-enhancers, that recruit much of the cell’s transcriptional
apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a
subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous
somatic mutations are acquired that introduce binding motifs for the MYB transcription
factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1
oncogene. MYB binds to this new site and recruits its H3K27 acetylase–binding partner
CBP, as well as core components of a major leukemogenic transcriptional complex that
contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers
found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB
in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible
for the generation of oncogenic super-enhancers in malignant cells.

I
n cancer cells, monoallelic expression of on-
cogenes can occur through a variety of mech-
anisms, including chromosomal translocation,
alterations in promoter methylation, paren-
tal imprinting, and intrachromosomal dele-

tion (1–3). A quintessential example is TAL1d,
an ∼80–kilobase (kb) deletion on chromosome
1p33 that is found in 25% of cases of human T cell
acute lymphoblastic leukemia (T-ALL). The dele-
tion results in overexpression ofTAL1, an oncogene
coding for a basic helix-loop-helix transcription
factor, by mediating fusion of TAL1 coding se-
quences to the regulatory elements of the ubiq-
uitously expressed gene “SCL-interrupting locus”
(STIL) (4–6). However, we previously reported
that a substantial proportion of T-ALLs, includ-

ing the Jurkat T-ALL cell line, have monoallelic
overexpression of TAL1 but lack either the TAL1d

abnormality or a chromosomal translocation
of the TAL1 locus (7, 8).
We hypothesized that cis-acting genomic lesions

affecting TAL1 regulatory sequences might ac-
count for monoallelic TAL1 activation. Chro-
matin immunoprecipitation (ChIP)–sequencing
(ChIP-seq) analysis of Jurkat cells revealed aber-
rant histone H3 lysine 27 acetylation (H3K27ac),
a mark of active transcription, starting upstream
of the TAL1 transcriptional start site and extend-
ing across the first exons (Fig. 1A) (9, 10). Regions
with such rich and broad H3K27ac marks have
been termed super-enhancers (also stretch en-
hancers or locus control regions) and are com-

monly found at genes that determine cell identity
in embryonic stem (ES) cells and in tumor cells
at oncogenes critical for the malignant cell state
(11–17). The super-enhancer encompassing TAL1
in Jurkat cells was aberrant, in that it was not
present in fetal thymocytes, normal CD34+ hem-
atopoietic stem and progenitor cells (HSPCs), or
in other T-ALL cell lines, such as TAL1d-positive
RPMI-8402 cells and DND-41 T-ALL cells that
lack TAL1 expression (Fig. 1A) (9). Of note, chro-
matin conformation capture experiments recently
performed in Jurkat cells identified a looping
interaction involving an enhancer site 8 kb up-
stream of the transcription start site (TSS), which
coincides with the locations of both the aberrant
super-enhancer and the positive autoregulatory
binding sites for members of the TAL1 complex
in this cell line (Fig. 1A, red arrow) (9, 18).
Sequencing of the genomic DNA region en-

compassing this site identified a heterozygous
12–base pair (bp) insertion (GTTAGGAAACGG)
that aligned precisely with the TAL1, GATA3,
RUNX1, and HEB ChIP-seq peaks (Fig. 1B).
Among eight additional TAL1-positive T-ALL
cell lines, MOLT-3 cells also harbored an ab-
normal heterozygous 2-bp insertion (GT) at
the same site (Fig. 1B), whereas none of 10
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