Regulation of Cell Signaling Dynamics by the Protein Kinase-Scaffold Ste5

Nan Hao, Sujata Nayak, Marcelo Behar, Ryan H. Shanks, Michal J. Nagiec, Beverly Errede, Jeff Hasty, Timothy C. Elston, and Henrik G. Dohlman

1Department of Pharmacology
2Department of Biochemistry and Biophysics
3Department of Physics
4Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA

Correspondence: hdohlman@med.unc.edu (H.G.D.), telston@amath.unc.edu (T.C.E.)

SUMMARY

Cell differentiation requires the ability to detect and respond appropriately to a variety of extracellular signals. Here we investigate a differentiation switch induced by changes in the concentration of a single stimulus. Yeast cells exposed to high doses of mating pheromone undergo cell division arrest. Cells at intermediate doses become elongated and divide in the direction of a pheromone gradient (chemotropic growth). Either of the pheromone-responsive MAP kinases, Fus3 and Kss1, promotes cell elongation, but only Fus3 promotes chemotropic growth. Whereas Kss1 is activated rapidly and with a graded dose-response profile, Fus3 is activated slowly and exhibits a steeper dose-response relationship (ultrasensitivity). Fus3 activity requires the scaffold protein Ste5; when binding to Ste5 is abrogated, Fus3 behaves like Kss1, and the cells no longer respond to a gradient or mate efficiently with distant partners. We propose that scaffold proteins serve to modulate the temporal and dose-response behavior of the MAP kinase.

INTRODUCTION

Different environmental stimuli often employ the same set of signaling proteins to achieve very different developmental outcomes. A prototypical example occurs in the yeast Saccharomyces cerevisiae. Haploid cells exposed to mating pheromones will undergo cell division arrest and polarized cell expansion leading to shmoo formation. These events prepare haploid a- and α-type cells to mate, resulting in the formation of an a/α diploid (Wang and Dohlman, 2004). Alternatively, cells in nutrient-poor media exhibit an altered budding pattern, long branching filaments, and increased adherence and invasion of the substratum. This behavior is variously known as invasive growth, pseudohyphal growth, or filamentous growth (Figure 1A). Despite striking differences in cell morphology and behavior, the pheromone- and nutrient-response pathways employ the same protein kinase cascade comprised of Ste20, Ste11, Ste7, and either of two mitogen-activated protein (MAP) kinases, Kss1 and Fus3 (Liu et al., 1993; Roberts and Fink, 1994). Kss1 is needed for invasive growth, while Fus3 is required for growth arrest (Cook et al., 1997; Madhani and Fink, 1997; Roberts et al., 2000; Roberts and Fink, 1994; Sabbagh et al., 2001) (Figure 1A).

Another lesser-known example of component sharing is the differentiation switch triggered by alterations in pheromone concentration. Whereas yeast cells exposed to a high dose of pheromone undergo cell division arrest and shmoo formation, at lower doses they transiently arrest, become elongated, and then divide, presumably in the direction of a pheromone gradient (Dorer et al., 1995; Erdman and Snyder, 2001; Paliwal et al., 2007; Segall, 1993) (Figure 1A). The growth-arrest and elongated-growth pathways employ the same cell-surface receptor, G protein transducer, and downstream protein kinases (Figure 1A). Whereas either Fus3 or Kss1 will sustain the elongated cell morphology, Fus3 alone is required for growth arrest and shmoo formation (Erdman and Snyder, 2001). It is not known if Fus3 or Kss1 contribute to a chemotropic-growth response.

In the past, stimulus-specific responses have been ascribed to the scaffolded association of specific protein kinases. The term “scaffold” is commonly used to describe a protein that can assemble multiple distinct binding partners and promote their mutual interactions. In yeast, the scaffold protein Ste5 has binding partners that include Ste11, Ste7, and Fus3. Whereas Ste5 is absolutely required for activation of Fus3 (Andersson et al., 2004; Breitkreutz et al., 2001; Flatauer et al., 2005; Kusari et al., 2004; Maleri et al., 2004), Ste5 binds poorly to Kss1 and is not required for the Kss1-mediated invasive-growth response (Choi et al., 1994; Kusari et al., 2004; Printen and Sprague, 1994). Based on these differences, it has been widely assumed that Ste5 insulates Fus3 from other MAP kinases that use the same upstream components and thus prevents activation by irrelevant signals. While clearly required for Fus3 activity, however, Ste5 nevertheless allows activation of Kss1 by pheromone (Andersson et al., 2004; Breitkreutz et al., 2001; Choi et al., 1994; Flatauer et al., 2005; Maleri et al., 2004; Printen and Sprague, 1994). These observations have prompted a search for additional functions for Ste5.

More recently, Ste5 was reported to undergo a stimulus-induced conformational change and to allosterically regulate
Fus3 kinase activity (Bhattacharyya et al., 2006; Sette et al., 2000). Ste5 stimulates Fus3 autophosphorylation at Tyr-182, one of two sites normally phosphorylated upon full activation of the kinase (Gartner et al., 1992). This monophosphorylated form of Fus3 is partially active. Moreover, the interaction of Ste5 with Fus3 results in diminished overall signaling at the level of new gene transcription (Bhattacharyya et al., 2006; Sette et al., 2000). Thus, Ste5 is essential for Fus3 signaling but also limits the overall output of the Fus3 signaling pathway.

Here we establish a role for Ste5 in mediating chemotropic-growth behavior in yeast. We show that Ste5 acts as a dynamic modulator of Fus3, conferring slow kinase activation and a sigmoidal (ultrasensitive) pheromone dose-response profile. By comparison, Kss1 activation is rapid and exhibits a graded dose-response behavior. We propose that Ste5 allows cells to discriminate between pheromone doses appropriate for chemotropic growth versus growth arrest and mating and does so by altering the time- and dose-dependent behavior of Fus3.

RESULTS

Yeast cells are well-known to undergo a developmental switch from nutrient-driven invasive growth to pheromone-driven growth arrest and mating. Previous investigations have highlighted the fact that these pathways share many, but not all, component proteins. However, it remains unclear which pathway-specific components are required for signal fidelity as opposed to pathway-specific behaviors such as altered morphology or invasion. As an alternative approach, we investigated a distinct differentiation switch triggered by a common stimulus (Figure 1A).

At high doses of pheromone, cells arrest in G1 and exhibit the characteristic shmoo morphology. At intermediate doses, they

Figure 1. Yeast Cell Differentiation Induced by Different Concentrations of Pheromone
(A) Common signaling components are used for nutrient-driven invasive growth, as well as for the pheromone-driven switch from vegetative growth to elongated or chemotropic growth and growth arrest.
(B) Schematic of the microfluidic gradient device. Ports c and cw correspond to cell loading and cell waste, respectively. Ports m1 and m2 are for media supply, w1 and w2 are media waste ports. Gradient within the chamber is established by diffusion between m1 and m2 via the microchannels that connect the media channels to the cell chamber.
(C) Yeast cells undergo three distinct developmental fates in a pheromone gradient. Cells are loaded evenly and at a very low density, but rapidly dividing cells eventually fill the chamber at the lowest concentrations of pheromone (zone I).

Fus3 kinase activity (Bhattacharyya et al., 2006; Sette et al., 2000). Ste5 stimulates Fus3 autophosphorylation at Tyr-182, one of two sites normally phosphorylated upon full activation of the kinase (Gartner et al., 1992). This monophosphorylated form of Fus3 is partially active. Moreover, the interaction of Ste5 with Fus3 results in diminished overall signaling at the level of new gene transcription (Bhattacharyya et al., 2006; Sette et al., 2000). Thus, Ste5 is essential for Fus3 signaling but also limits the overall output of the Fus3 signaling pathway.

Here we establish a role for Ste5 in mediating chemotropic-growth behavior in yeast. We show that Ste5 acts as a dynamic modulator of Fus3, conferring slow kinase activation and a sigmoidal (ultrasensitive) pheromone dose-response profile. By comparison, Kss1 activation is rapid and exhibits a graded dose-response behavior. We propose that Ste5 allows cells to discriminate between pheromone doses appropriate for chemotropic growth versus growth arrest and mating and does so by altering the time- and dose-dependent behavior of Fus3.

RESULTS

Yeast cells are well-known to undergo a developmental switch from nutrient-driven invasive growth to pheromone-driven growth arrest and mating. Previous investigations have highlighted the fact that these pathways share many, but not all, component proteins. However, it remains unclear which pathway-specific components are required for signal fidelity as opposed to pathway-specific behaviors such as altered morphology or invasion. As an alternative approach, we investigated a distinct differentiation switch triggered by a common stimulus (Figure 1A). At high doses of pheromone, cells arrest in G1 and exhibit the characteristic shmoo morphology. At intermediate doses, they
grow slowly and appear elongated (Figure 1A). Given that these events require the same receptor and G protein, as well as many of the same effector kinases, this system provides an excellent opportunity to determine the function of pathway-specific components. Here we investigate the role of Ste5.

Initially we investigated dose-dependent responses to pheromone, using a variety of functional assays. Pheromone-induced transcription has been shown to exhibit a graded dose-response profile (Poritz et al., 2001), whereas downstream processes such as G1 arrest and mating are switch-like. Switch-like behavior is an extreme example of ultrasensitivity, defined as any response with a Hill coefficient greater than one (Ferrell and Machleder, 1998; Goldbeter and Koshland, 1981). To determine if other aspects of the pheromone response exhibit ultrasensitivity, we monitored differentiation of cells exposed to a range of pheromone concentrations. Cells were classified into one of three categories: vegetative growth, elongated growth, or shmoo. Vegetative growth occurs in the absence of pheromone. In this case, cells divide rapidly and bud axially (new buds emerge from the daughter cell in the direction of the mother cell). At intermediate doses of pheromone, the cells appear elongated, proliferate slowly, and divide in a bipolar fashion, opposite the mother cell (Dorer et al., 1995; Erdman and Snyder, 2001; Madden and Snyder, 1992). At high doses of pheromone, the cells arrest and form a shmoo. Each of these morphologies is illustrated in Figure 1.

As shown in Figure 2A, >85% of wild-type cells grow vegetatively at pheromone concentrations of 0.1 μM or less. At concentrations of 0.3–3 μM, the population transitions from vegetative growth to elongated growth, even in the absence of a pheromone gradient. At 10 μM, nearly all cells undergo growth arrest and shmoo.

Figure 2. Experimental Measurements of Yeast Cell Differentiation

(A) Cell morphologies classified as vegetative growth, elongated growth (length:width ≥ 1.6), or shmoo. Wild-type and mutant cells exposed to a uniform concentration of pheromone exhibit each of the three morphologies. (B) Cells exposed to a linear gradient of pheromone exhibit the three morphologies depending on their position within the chamber. Cell differentiation was recorded at 600 min for three independent experiments. (C) Chemotropic growth quantified as the angle of cell projections and the direction of the gradient, represented with polar plots. Error bars, ± standard error of the mean.
formation. The first transition occurs over a broader range of pheromone concentrations, as compared with the second transition. Thus, the differentiation switch from elongated growth to growth arrest may exhibit ultrasensitivity.

We then investigated how the MAP kinases contribute to the two developmental transitions. It is well-established that mutants lacking Fus3 are unable to shmoo but maintain the ability to transition from vegetative growth to elongated growth (Figure 2A, second row). Conversely, cells lacking Kss1 still undergo both transitions (Figure 2A, third row), but the dose-response profile for the transition from vegetative growth to elongated growth is significantly steeper than that of cells containing both MAP kinases or Kss1 alone. Signaling exclusively through Fus3 increases the pheromone concentration required for elongated growth, thereby reducing the range of pheromone levels for which this behavior is observed. Kss1 broadens this range, allowing cells to become elongated at lower doses of pheromone as compared with cells that express both MAP kinases. Thus Kss1 and Fus3 confer distinct dose-response characteristics on cell growth: Kss1-mediated responses are graded, while Fus3 responses appear ultrasensitive.

We next examined whether elongated growth corresponds to chemotropic growth, defined here as cell expansion and division in the direction of a stimulus gradient. It has been suggested that chemotropic growth could allow yeast, which are otherwise non-motile, to orient new bud formation in the direction of a weak pheromone stimulus and thus toward a distant mating partner (Dorer et al., 1995; Erdman and Snyder, 2001; Madden and Snyder, 1992). To this end, we constructed a microfluidic chamber capable of exposing cells to a precisely controlled linear concentration gradient. The gradient is achieved by passive diffusion between two parallel microchannels containing either no pheromone or a dose of pheromone sufficient to induce cell division arrest (Figure 1B and see the Supplemental Data available online). There is no active flow within the growth chamber, thereby allowing the nonadherent cells to remain stationary during the course of the experiment. In this method, the cells are at low density and the pheromone is constantly replenished, resulting in a lower dose-activity profile (see below).

As shown in Figures 1C and 2B, as well as in Figure S1 and the accompanying movies (Supplemental Data), cells within the growth chamber exhibit all three morphologies, depending on the local concentration of pheromone. Cells exposed to minimal doses of pheromone grow vegetatively and divide axially (Dorer et al., 1995; Madden and Snyder, 1992). Cells exposed to high doses of pheromone undergo cell division arrest and form a shmoo. At intermediate doses, the cells appear elongated but continue to divide slowly and in the direction of increasing pheromone concentrations (Figure 2B). This chemotropic-growth response generally entails just one round of elongated growth, after which the daughter cell detaches from the mother cell and forms a shmoo. This is in contrast to invasive growth, in which cells undergo several rounds of polarized budding to form a long filament. In wild-type cells, the vast majority of new buds and cell projections emerge within ±60° of the gradient, and very few are outside ±90° (Figure 2C). Mutants lacking Fus3 or Kss1 retain the ability to undergo the elongated-growth response. Likewise, mutants lacking Kss1 are able to divide in the direction of the gradient, although Kss1 may contribute at very low doses of pheromone or in mutants that are supersensitive to pheromone (Figures 2B and 2C) (Dorer et al., 1995; Erdman and Snyder, 2001; Paliwal et al., 2007; Segall, 1993). In cells lacking Fus3, however, newly formed buds emerge randomly with respect to the gradient, and the cells no longer undergo growth arrest and shmoo formation (Figures 2B and 2C). Thus Fus3 is specifically required for chemotropic growth but is dispensable for elongated growth.

Cellular responses mediated by Fus3 appear to be ultrasensitive, while responses mediated by Kss1 appear graded (Figure 2). Measurements of cell morphology are somewhat qualitative, however, so we also measured changes that occur at a molecular level. Specifically, we asked if there is ultrasensitivity at the level of protein kinase activity. To this end, we monitored Fus3 and Kss1 activation in cells treated with a range of pheromone concentrations, using antibodies that recognize the dually phosphorylated (fully activated) form of each protein. As shown in Figure 3A and Figure S2, the temporal and dose-response profiles for Fus3 and Kss1 phosphorylation are distinct. At 1 μM pheromone (a dose sufficient to trigger chemotropic growth but not shmoo formation), Fus3 is phosphorylated to 22% of maximum, while Kss1 is phosphorylated to 48% of maximum. At 10 μM pheromone (a dose sufficient to trigger cell division arrest and shmoo formation), both kinases are maximally activated. Remarkably, we found that maximum kinase activity occurs at different times depending on the pheromone concentration; for example, Fus3 activity peaks at 60 min in response to 10 μM pheromone, whereas it peaks at 15 min in 1 μM pheromone (Figure 3A). Thus, two different doses may produce identical kinase activity at a single (early) time point but nevertheless exhibit dramatic differences in the duration and final maximum level of kinase activation. Accordingly, we quantified peak kinase activity (Figure 3D) and area under the curve (Figure 3F) for each dose of pheromone. The latter incorporates the elements of duration and activity into a single parameter. Both of these methods accurately account for the observed differences in activity and yielded similar results. As shown in Figure 3F, the effective Hill coefficient for activation of Fus3 is substantially higher than for activation of Kss1 (nH = 2.2 and 1.3, respectively). This difference mirrors the

Figure 3. Experimental and Computational Analysis of MAP Kinase Activation with or without Ste5
Time course of MAP kinase activation monitored in wild-type (A and D) and mutant (C and E) strains treated with the indicated pheromone concentrations, using phospho-p42/44 antibodies that recognize the dually phosphorylated (fully activated) form of each protein. (B) Simple mathematical models qualitatively reproduce the experimental data for Fus3 and Kss1 activation. Each model assumes that the upstream signal (e.g., Ste7) is saturated at early times and at low pheromone concentrations, and any further increases in pheromone concentration prolong the duration of the upstream signal. (D and E) Kinase activation quantified as the percentage of maximum activation obtained at each dose (Peak Activation). (F) Kinase activation at different concentrations of pheromone quantified as the area of the rectangle fit to half-maximum activity (Activation Area) and fit by the Hill equation (nH, Hill coefficient). Band intensity from three or more experiments was quantified by scanning densitometry presented as percentage of maximum intensity for each experiment. Error bars, ± standard error of the mean.
dose-response profiles for Fus3- and Kss1-mediated cell differentiation responses, as reported in Figure 2. Note that we measured the MAP kinase activation of a population of cells. The response might be even more switch-like in individual cells.

Fus3 and Kss1 are activated by the same upstream protein kinases, most immediately by the MAP kinase Ste7. Nevertheless, we have shown above that Fus3 and Kss1 exhibit very different temporal and dose-dependent behaviors. Whereas Kss1 activity peaks quickly, Fus3 activity increases slowly at a constant rate (slope) that is independent of the pheromone level. In both cases, increasing the pheromone level delays the time at which MAP kinase activity begins to decline. One way to account for this unusual behavior is to assume that the predominant effect of increases in pheromone concentration is to prolong the duration of Ste7 activity (Figure 3B, top panel). To address this possibility, we constructed simple mathematical models of Fus3 and Kss1 activation and investigated each model’s response to varying durations of Ste7 activation. Both models assume that the phosphorylation and dephosphorylation reactions follow Michaelis-Menten kinetics. Each model further assumes that the V_{max} for phosphorylation of the MAP kinase is proportional to the active Ste7 concentration. The difference between the models is that the rate constants describing phosphorylation and dephosphorylation of Kss1 are larger than those of Fus3 (Supplemental Data). Figure 3B shows the Ste7 activation profile used as the input signal for both MAP kinases (top panel), as well as the activity for Fus3 (middle panel) and Kss1 (bottom panel) predicted by the corresponding models. There is a very good qualitative agreement between these simulations (Figure 3B) and the experimental data (Figure 3A). The models also demonstrate how a purely kinetic mechanism (slow activation) can be used to convert a graded response to one that is more switch-like (see the Discussion).

We then considered why Fus3 is activated more slowly than Kss1. This difference could be an inherent property of each kinase. Alternatively, slow activation of Fus3 could be due to binding of Ste5. Indeed, Ste5 was reported previously to diminish Fus3-mediated transcription responses (Bhattacharyya et al., 2006). To investigate the contribution of Ste5 to Fus3 dynamics, we monitored kinase activation in the absence of Ste5-Fus3 interaction. Deletion of STE5 blocks signaling altogether, so as an alternative we used a mutant form of Ste5 in which Fus3 docking is disrupted (“nondocking” allele, Ste5ND). This mutant binds poorly to Fus3 (Maeder et al., 2007) yet produces an enhanced transcription-induction response (Bhattacharyya et al., 2006). Thus we investigated how Ste5ND affects dose- and time-dependent signaling events including cell morphogenesis, gradient sensing, and kinase activation. To eliminate any possibility that Kss1 can substitute for Fus3 or otherwise modulate Fus3 activity in the absence of Ste5, these experiments were conducted in a Kss1-deficient strain. As shown in Figure 2A, cells that express Ste5ND are able to undergo the transitions from vegetative growth to elongated growth and then to growth arrest. However, the transitions occur at lower pheromone concentrations and the dose-response profile is more graded than that seen in wild-type cells. Indeed, we observed considerable overlap in the distribution of all three categories of cells within the gradient chamber. Moreover, cells that express Ste5ND exhibit diminished elongation and orientation toward the source of pheromone (Figures 2B and 2C). Likewise, Fus3 becomes fully activated in the Ste5ND strain, but activation occurs with faster kinetics (Figure 3C). Additionally, the Hill coefficient for activation of Fus3 is reduced from $n_H = 2.2$ in wild-type cells to $n_H = 1.5$ in Ste5ND mutant cells, a value similar to that normally observed for Kss1 ($n_H = 1.3$) (Figure 3F). Thus, under conditions in which it is no longer modulated by Ste5, the dynamic and dose-dependent behavior of Fus3 resembles that of Kss1.

We also considered the possibility that Ste5ND might affect the activity of other signaling components upstream of Fus3, such as Ste11 or Ste7. To test this, we examined whether Ste5ND alters the activity of Kss1, which likewise requires Ste11 and Ste7. In accordance with the model, Ste5ND (in the absence of Fus3 expression) had no effect on Kss1 activation (Figure S3). Another upstream mechanism of regulation is pheromone degradation. The pheromone protease Bar1 is upregulated upon prolonged pathway activation, and different degrees of induction by Fus3 and Kss1 might somehow underlie the differences observed for the two kinases. To address this concern, and as a further test of our computational model, we measured Fus3 and Kss1 activation in a bar1Δ mutant strain (Figure S4A). As anticipated, differences in the dynamic and dose-dependent behaviors of Fus3 and Kss1 remain unchanged. Strikingly, by altering only the input signal profile, the equations and parameters that govern kinase activation in wild-type cells could also be used to accurately describe kinase activation in the bar1Δ mutant cells (Figure S4B).

Finally, we examined the physiological importance of the elongated- and chemotropic-growth behaviors in mating. Previous investigations employed the “pheromone-confusion” assay, which compares overall mating efficiency in the presence or absence of added pheromone. The underlying assumption is that exogenous pheromone will obscure natural pheromone gradients and thereby diminish the ability of cells to detect a potential mating partner (Dorer et al., 1995; Nern and Arkowitz, 1998; Strickfaden and Pryciak, 2007; Valtz et al., 1995). One drawback to this method is that addition of excess exogenous pheromone is also likely to obscure or otherwise interfere with pheromone clearance by Bar1 protease, receptor occupancy, and adaptation/desensitization responses that further impinge on mating efficiency. As an alternative approach, we measured mating efficiency under conditions in which potential mating partners are rare (10:1 ratio) and spatially segregated (plated on solid growth medium). As shown in Figure 4, the Ste5ND mutants mate substantially better than wild-type cells, presumably because they can better detect and respond to a distant mating partner. Conversely, Ste5ND mutants mate more poorly under conditions in which potential mating partners are more abundant (1:10 ratio) but still dispersed, presumably because they can no longer orient toward the closest of multiple potential mating partners. This reduction in mating efficiency occurs despite the increase in pheromone sensitivity.

From these data, we conclude that Ste5 confers the slow and ultrasensitive responses characteristic of Fus3. If Fus3 cannot bind to Ste5, the cells no longer undergo chemotropic growth and exhibit an altered ability to mate efficiently with partners at a distance.
and cell differentiation (Marshall, 1995). Similarly in yeast, tem-
permance and proliferation, while nerve growth factor causes sustained ERK activation
Activation of the ERK MAP kinase leading to cell prolifera-
cellular responses depending on the temporal behavior of the pathway. Thus, an important question is how the same pathway elicits different developmental re-
sponses. Here we demonstrate that Ste5 selectively alters the
temporal and dose-dependent behavior of Fus3 and thereby
megs to produce an all-or-none response leading to cell
suitable MAP kinases exhibit distinct dose-dependent behaviors.
Thus, the ultrasensitivity exhibited by Fus3 is not as dramatic
viation, MAP kinase activation assays. By all of these measures it
appears that Ste5 is necessary for the slow and ultrasensitive
responses exhibited by Fus3. When Ste5 binding is abrogated,
Fus3 behaves like Kss1.

A distinction between our analysis and prior investigations is that we considered the role of pheromone gradient sensing. Most studies of the yeast pheromone response have been
done with uniform and saturating concentrations of pheromone.
In a physiological setting, however, yeast cells are likely to be
exposed to a pheromone gradient emanating from a potential mating partner. When that partner is too distant for mating to occur, the gradient will be weak and some mechanism must ex-
ist to bridge the divide. Here we demonstrate that Ste5 promotes
cell elongation in the direction of a pheromone gradient, thereby
increasing the probability of mating with a distant partner.

Finally, our computational analysis reveals how a kinetic mech-
anism (specifically, slow activation) can potentially be used to con-
vert a graded response to one that is more switch-like. We postu-
late that the main effect of increasing pheromone concentration is to
increase the time the signal is on. In this scenario, the fast
activation kinetics of Kss1 allows it to faithfully track the input sig-
nal. Conversely, the slow activation kinetics of Fus3 means that it
does not saturate while the incoming signal is present. Because
Fus3 activity increases linearly with time, the response increases
with time and thus with pheromone concentration.

In summary, the findings presented here reveal one way that
scaffolds contribute to protein kinase activity. In this example,
Ste5 alters the dynamic behavior of Fus3, and these changes
promote gradient sensing and orientation toward a distant mat-
ing partner. Given the prevalence of scaffold proteins in signaling
cascades, the mechanisms elucidated here for Ste5 will likely
prove applicable to cell differentiation programs in other cellular

Figure 4. Physiological Analysis of the Role of Ste5 in Mating
Wild-type or Ste5\(^{ND}\) a-type cells and α-type tester cells were spread separately and evenly onto plates containing selective medium. Colonies of α:α diploids were counted after 2 days. Mating efficiencies averaged from three independent experiments are relative to wild-type (WT). Error bars, ± standard error of the mean.

DISCUSSION

The pheromone response pathway is perhaps the best-charac-
terized signal transduction system in any eukaryote, and it has
long served as a prototype for hormone, neurotransmitter, and
sensory-response systems in humans (Wang and Dohlman,
2004). Genetic and biochemical studies revealed that phero-
mone-induced growth arrest requires a protein kinase cascade
comprised of Ste20, Ste11, Ste7, and Fus3. These same signal-
ing components are required for pheromone-induced elongation
and gradient-sensing behavior. Thus, an important question is how the same pathway elicits different developmental re-
sponses. Here we demonstrate that Ste5 selectively alters the
temporal and dose-dependent behavior of Fus3 and thereby
megs to perceive a stimulus gradient. The cells are subse-
quentable to undergo chemotropic growth, growth arrest, and
effective fusion with a distant mating partner.

Experiments conducted in a variety of other systems have revealed that MAP kinases can produce distinct cellular re-
sponses depending on the temporal behavior of the pathway. In one oft-cited example, epidermal growth factor causes trans-
sient activation of the ERK MAP kinase leading to cell prolifera-
tion, while nerve growth factor causes sustained ERK activation
and cell differentiation (Marshall, 1995). Similarly in yeast, tem-
poral differences in MAP kinase activation can dictate whether
cells follow a mating or nutrient-driven invasive-growth program.
Specifically, when upstream kinases Ste11 or Ste7 are mutated
so as to be permanently active, Kss1 is activated in a sustained
manner, in preference to Fus3, and this condition leads to inva-
sive growth but not mating (Andersson et al., 2004; Flatauer
et al., 2005; Maler et al., 2004).

Another way MAP kinases can produce distinct cellular
responses is through changes in the dose-dependent behavior
of the pathway. MAP kinase signaling pathways have long been
known to exhibit ultrasensitivity (Koshland et al., 1982). For exam-
ple, MAP kinase cascades in Xenopus oocytes use a variety of
mechanisms to produce an all-or-none response leading to cell
maturity (Ferrell and Machleder, 1998). On the other hand, the
pheromone-induced transcription response in yeast exhibits a
more graded dose-response profile (Poritz et al., 2001), even
when downstream processes such as G1 arrest and mating are
switch-like. Our data reveal that the two pheromone-respon-
sive MAP kinases exhibit distinct dose-dependent behaviors.
Whereas activation of Kss1 is graded, activation of Fus3 is ultra-
sensitive. The ultrasensitivity exhibited by Fus3 is not as dramatic
as that demonstrated in Xenopus but is comparable to the bench-
mark example hemoglobin, which exhibits a Hill coefficient of 2.8.

Our data show that Ste5 is required for the unique time- and
dose-dependent characteristics exhibited by Fus3. Ste5 was
originally considered to function as a passive tether for protein
kinases. More recently, Ste5 was shown to be required for Fus3 activation but also impedes full activation of the signaling
pathway (Bhattacharyya et al., 2006). That loss of signaling
was demonstrated using a reporter transcription assay. To
determine the contribution of Ste5 to MAP kinase function, we
evaluated signaling in the absence of Fus3 binding (Ste5\(^{ND}\)). Sig-
naling was monitored by cell differentiation, gradient sensing,
and MAP kinase activation assays. By all of these measures it
appears that Ste5 is necessary for the slow and ultrasensitive
responses exhibited by Fus3. When Ste5 binding is abrogated,
Fus3 behaves like Kss1.

A distinction between our analysis and prior investigations is that we considered the role of pheromone gradient sensing. Most studies of the yeast pheromone response have been done with uniform and saturating concentrations of pheromone. In a physiological setting, however, yeast cells are likely to be exposed to a pheromone gradient emanating from a potential mating partner. When that partner is too distant for mating to occur, the gradient will be weak and some mechanism must exist to bridge the divide. Here we demonstrate that Ste5 promotes cell elongation in the direction of a pheromone gradient, thereby increasing the probability of mating with a distant partner.

Finally, our computational analysis reveals how a kinetic mechanism (specifically, slow activation) can potentially be used to convert a graded response to one that is more switch-like. We postulate that the main effect of increasing pheromone concentration is to increase the time the signal is on. In this scenario, the fast activation kinetics of Kss1 allows it to faithfully track the input signal. Conversely, the slow activation kinetics of Fus3 means that it does not saturate while the incoming signal is present. Because Fus3 activity increases linearly with time, the response increases with time and thus with pheromone concentration.

In summary, the findings presented here reveal one way that scaffolds contribute to protein kinase activity. In this example, Ste5 alters the dynamic behavior of Fus3, and these changes promote gradient sensing and orientation toward a distant mating partner. Given the prevalence of scaffold proteins in signaling cascades, the mechanisms elucidated here for Ste5 will likely prove applicable to cell differentiation programs in other cellular systems.

EXPERIMENTAL PROCEDURES

Strains and Plasmids
Standard methods for cell growth and maintenance were used throughout. Strain BY4741 (MATa leu2Δ met15Δ his3Δ ura3Δ) and BY4741-derived mutants were used unless otherwise indicated. Details of plasmid construction are provided in the Supplemental Data.
Immunoblot Analysis
Cell extracts (20 μg/lane) were resolved by 12% SDS-polyacrylamide gel electrophoresis and immunoblotting as described (Sabbagh et al., 2001). Band intensity was quantified by scanning densitometry using ImageJ (National Institutes of Health).

Microfluidics Chamber and Quantification of Gradient Sensing
A microfluidic device was constructed similar to one described previously (Palwal et al., 2007) and as detailed in the Supplemental Data. Image acquisition was done with a Nikon Diaphot TMD epifluorescence or Olympus IX81 inverted microscope. Image processing and analysis was done using Slide Book 4.1 Advanced Imaging Software and ImageJ. Polar plots are presented using MATLAB (Mathworks).

Quantitative Mating Efficiency Assay
DC17 (MATa his1) and BY4741 cells were grown to A600nm ~1.0, diluted with water, and spread separately and evenly onto plates containing synthetic growth medium. Diploid colonies were counted after 2 days. Mating was conducted with 5 × 10^4 a cells and 5 × 10^5 a cells (1:10), or 5 × 10^5 a cells and 5 × 10^4 a cells (10:1).

SUPPLEMENTAL DATA
Supplemental Data include supplemental text, Supplemental References, four figures, and one movie and can be found with this article online at http://www.molecule.org/cgi/content/full/30/5/649/DC1/.

REFERENCES