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ABSTRACT

Computational modeling of biological systems has
become an effective tool for analyzing cellular
behavior and for elucidating key properties of the
intricate networks that underlie experimental obser-
vations. While most modeling techniques rely
heavily on the concentrations of intracellular mole-
cules, little attention has been paid to tracking
and simulating the significant volume fluctuations
that occur over each cell division cycle. Here,
we use fluorescence microscopy to acquire single
cell volume trajectories for a large population of
Saccharomyces cerevisiae cells. Using this data,
we generate a comprehensive set of statistics that
govern the growth and division of these cells over
many generations, and we discover several interest-
ing trends in their size, growth and protein produc-
tion characteristics. We use these statistics to
develop an accurate model of cell cycle volume
dynamics, starting at cell birth. Finally, we demon-
strate the importance of tracking volume fluctua-
tions by combining cell division dynamics with a
minimal gene expression model for a constitutively
expressed fluorescent protein. The significant oscil-
lations in the cellular concentration of a stable,
highly expressed protein mimic the observed exper-
imental trajectories and demonstrate the fundamen-
tal impact that the cell cycle has on cellular
functions.

INTRODUCTION

Synthetic biology has emerged as an important field in the
effort to quantitatively understand biological systems.
(1,2). Bridging the gap between engineering and biology,
this broad field includes a wide range of disciplines
ranging from synthetic biochemistry to the recreation of
life through artificial reconstruction of entire genomes

(3,4). An important aspect of synthetic biology involves
the design and construction of engineered gene circuits.
Combining the powerful tools of molecular biology and
computational modeling, synthetic gene networks can be
designed to perform a specific biological function, and
experimental data can be used to refine our quantitative
understanding of the predicted behavior.
Our ability to synthesize and manipulate gene networks

and study their behavior in living organisms has led
to significant discoveries regarding some of the most
fundamental cellular processes (5–8). In addition, the
construction of synthetic networks according to the spec-
ifications of quantitative models has led to the refinement
of our understanding of the principles of cellular regula-
tion (9–12). Essential to this approach is the ability to
develop computational models that can simulate and
predict the behavior of cellular networks in growing and
proliferating cells. In particular, the yeast Saccharomyces
cerevisiae has served as an important eukaryotic model for
cellular functions as fundamental as gene regulation and
as complex as cell cycle orchestration (13–16). Models
of gene regulation have been developed to elucidate
sources of noise in gene expression and the effect of
noise on fitness, to study the role of feedback in cellular
networks, and have led to discoveries of novel network
structure (6,17–29).
As we continue to develop these models as tools to

refine our quantitative understanding of basic biological
functions, an important and often overlooked contribu-
tion to network dynamics is the effect of volume fluctua-
tions associated with the cell growth and division cycle.
The majority of gene regulatory models rely on rate
constants that are concentration dependent, yet typically
the cellular volume is assumed to be constant. By ignoring
volume fluctuations that affect concentrations in a quasi-
periodic manner, the protein concentrations of ‘consti-
tutively expressed’ genes are often considered to be
constant, which can lead to incomplete conclusions
regarding gene network behavior.
To address this issue, we measured volume dynamics

along with gene expression in a population of yeast cells.
We analyzed the growth characteristics of budding cells,
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starting at birth, and generated a set of descriptive statis-
tics governing the growth and division process. We used
this information to develop an accurate cell division
model, which takes into account the two distinct linear
growth rates observed in the G1 and S phases. When
combined with constitutive production of a fluorescent
protein, the analysis reveals an oscillatory trend in the
protein concentration over time. This effect of cellular
growth and division is commonly overlooked, but it can
play an important role in the behavior of both native and
synthetic gene networks.

MATERIALS AND METHODS

Strain and cell culture

The yeast strain was created by targeted chromosomal
integration of the pRS61-yv vector at the gal1-10 locus
of S. cerevisiae strain K699 (a, ADE2, ura3, his3, trp1,
leu2). This vector was constructed using standard recom-
bination techniques and contains the gal1 promoter locus
of S. cerevisiae driving production of the yeast-enhanced
Venus fluorescent protein (yEVFP), a YFP variant (13).
Cultures were grown in synthetic drop-out (SD) medium
supplemented with all amino acids except uracil for selec-
tion of correct integration and containing 2% glucose.
After selection, cultures were grown in SD supplemented
with all amino acids and containing 2% galactose for full
induction of the production of the yEVFP protein.
Cultures were grown at 30�C for 12–18 h to an OD600

of 1.0±0.25. In preparation for loading into the
microfluidic device, the sample was passed back to an
OD600 of 0.1 and allowed to grow for �3 h to reenter
exponential growth.

Data acquisition

Image acquisition was performed on a Nikon Diaphot
TMD epifluorescent inverted microscope with a
hardware-based autofocus controller (Prior Scientific,
Rockland, MA, USA). Images were acquired using a
Hamamatsu ORCA-ERG cooled charge-coupled device
(CCD) camera, and fluorescence visualization was per-
formed with narrow bandpass excitation and emission
filters for YFP (Chroma, Inc., Rockingham, VT, USA).
The cells were imaged inside a microfluidic chemostat as
previously described (30).

Flow cytometry data acquisition

Flow cytometry data were acquired with a Becton-
Dickinson FACSCalibur flow cytometer. The beads
used for size calibration were obtained from
Spherotech (SPHEROTM Flow Cytometry Size
Standard Kit). For each size bead, we collected 50 000
samples, and we used MATLAB (The MathWorks,
Inc.) to calculate the mean forward scatter (FSC) mea-
surement. We also took FSC and fluorescence data on
the flow cytometer, using the K699 strain described
above. To prepare the cells to be assayed, we grew
them overnight in medium containing 2% galactose.
In the morning, cells were passed to an OD600 of

0.05 and allowed to grow for 8 h. At this time, 1ml
of the culture was spun down at 8000 r.p.m. for 1min,
and the cells were resuspended in sterile phosphate
buffered saline. The cells were run through the flow
cytometer, and 50 000 cells were sampled. Again,
MATLAB was used to analyze the flow cytometry data.

Computational model

MATLAB was used to model the growth and division of
a population of yeast cells. The data from the trajectory
analysis were used to generate histograms for each char-
acteristic. These histograms were fit to Gaussian distribu-
tions, and the mean and standard deviation was calculated
for each. These statistics were fed into the MATLAB
model. Each cell was initialized using values drawn from
a distribution based on this data. As cells were modeled
from birth, the trends of the characteristics as a function
of generation were also taken into account. That is, cells
were initialized to a size drawn from the distribution of
cells sizes at birth. Similarly, the fluorescence production
rate, growth rate and growth phase characteristics were
chosen from histograms of first generation measurements.
After initialization, a cell was grown over time according
to the current value of the growth rate, and fluorescence
was produced based on the current value of fluorescence
production.

The cell size was grown at the current value of the G1
growth rate until a threshold time was reached, set by the
product of the cycle time and the fraction of time to be
spent in G1. After this time, the cell size was grown at the
current value of the S growth rate. The fluorescence was
increased at a constant rate for the entire duration of the
current cell cycle. When cell cycle end time was reached,
the size and fluorescence of a cell was multiplied by the
current value of ", the fraction of volume to be retained by
the mother at the time of division. For the next cycle,
the values above were reset, again drawn from the distri-
butions extracted from experimental data. The cells were
grown for 836min, the average length of the experimental
trajectories. One thousand cells were simulated and
compared with the experimental data, as described in
the main text (see Supplementary Data for more details).

RESULTS AND DISCUSSION

In order to obtain a quantitative set of cell cycle growth
characteristics, we tracked a large population of cells
growing in a monolayer inside a microfluidic chemostat.
The cells expressed a stable Venus YFP from the consti-
tutive gal1 promoter. A segmentation algorithm was
applied to each image, providing an accurate area and
position measurement for each cell at each time point
(13,30). Volume for each cell was measured by calculating
the major and minor axes for each cell area and fitting an
ellipsoid to these values (Figure 1a–c). The height of the
cell was assumed to be equal to the minor axis, unless the
minor axis was larger than the height of the chamber.
In that case, the height of the cell was set equal to the
height of the chamber.
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Cells were tracked from birth, and the volumes of
a mother and bud cell were added together throughout
each S phase (Figure 1a). The first appearance of the
bud marks the beginning of S phase, so we used this
visual cue to split each cell cycle into two growth
phases. Using this time point for each cell cycle, we were
able to measure the time spent in each phase and the
growth rate of the cell in each phase (approximated by a
linear fit to the slope of the volume). At the time of
mitosis, the two volume trajectories were split and their
volumes were considered separate starting at the begin-
ning of the next G1 phase (Figure 1b). For the mother
cell, this yields a discontinuity at the point of mitosis, with
the volume dropping as the daughter receives a fraction of
the volume and the mother retains the remaining fraction
(Figure 1d, top).
YFP gene expression trajectories were generated by

integrating the fluorescence signal over the entire cell at
each time point (Figure 1d, middle), and concentration
was calculated as the total fluorescence divided by the
total volume (Figure 1d, bottom). The volume trajectories
clearly show two distinct linear growth phases: a period of
slow growth during the G1 phase of the cell cycle, and
a period of faster growth as the cell begins to bud and
progress through S phase towards mitosis. The production
of YFP, on the other hand, remains roughly constant
throughout each cell cycle. Because the tracking algorithm
involves measuring the total fluorescence of a stable
protein over each cell as a whole (including mother and
bud, when appropriate), the production of YFP is calcu-
lated as the slope of the fluorescence trajectory between
two budding events. The combination of these two
phenomena leads to clear oscillations of the concentration
trajectories. A density plot of 15 concentration trajectories
demonstrates both the oscillations in individual trajec-
tories as well as the large degree of cell-to-cell variability
(Figure 1e).
For each cell, we tracked various growth characteristics

to obtain distributions and determine trends in these char-
acteristics (Figure 2a, Supplementary Data). Each cell
included in the analysis was tracked from birth, in order
to be able to confidently discern generation-dependent
behaviors. That is, some statistics were observed to
change over the first few generations of life, as the cell
gradually reached a healthy adult size and growth rate.
For example, the time required to complete each cell
division cycle decreases over the first few generations
(Figure 2b). This is a well known phenomenon, which
has been observed using various techniques over the
years (30,31).
Other traits that we observed and characterized include

growth rates during both G1 and S phases, growth phase
durations, fraction of volume loss at the end of each
mitosis occurrence and cellular volume at the beginning
and end of each cell cycle. While some characteristics are
fairly constant, others vary greatly from cell to cell or even
for an individual cell throughout its trajectory. Figure 2
shows all the characteristics that we quantified and
how they vary by generation. For each characteristic,
we quantified the mean and standard deviation across all
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Figure 1. Single cell volume trajectories for a population of
S. cerevisiae. (a) Assymetrically budding yeast cells were tracked
through many generations of growth and division. During S phase,
a mother cell begins to produce a small daughter cell. Until mitosis,
the mother and daughter are connected, so their volumes are added
together. (b) After mitosis, the mother and daughter cells have split,
and their volumes are independent. During G1 phase, they grow very
slowly as they prepare to produce their next buds. (c) Each cell was
approximated to be an ellipsoid, with a major and minor axis (a and b,
respectively). For larger cells with a minor axis greater than the height
of the imaging chamber, the height of the cell was set equal to the
height of the chamber; otherwise, the height of the cell was set equal
to the minor axis. (d) Trajectories were generated for each cell, based
on these volume measurements. The volume (top) clearly displays two
different growth rates for G1 and S phase. Fluorescence (middle) was
integrated over the entire area of each cell, and concentration (bottom)
was calculated as total fluorescence divided by total volume. The com-
bination of constant fluorescence production and bilinear volume
growth yields oscillatory concentration trajectories. (e) Concentration
trajectories for 15 cells show clear oscillations and a high degree of
variability.
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cells as well as across each individual cell’s multiple
generations.
Our volume trajectories demonstrate two clear

growth phases, which could each be approximated by a
linear growth rate. As expected, the G1 phase growth
rate is significantly slower than the S phase growth rate
(Figure 2c, S in blue, G1 in red). Interestingly, the growth
rates in each phase remain constant throughout the gen-
erations observed. However, the time spent in each phase
changes over the first three cycles, following a similar
trend as the overall cell cycle time (Figure 2d). The time
spent in G1 has a more extreme trend, with the time
almost dropping in half over the first three generations.
The S phase growth rate on the other hand speeds up a
little as well, but our data demonstrate that the extra time
required to complete the cell cycle early in life is spent
mostly in the G1 phase. This is consistent with other
studies that have demonstrated that changes in growth
rate in different media conditions are mainly reflections
of altered lengths of the G1 phase, with the duration of
the S phase remaining fairly constant (32).
We also looked at cell size trends. For each cell,

we examined how the maximum size reached at the
end of each cell cycle varies over time, as well as how
the mean of the maximum size compares to that of
other cells (Figure 2e). As consistent with previous
findings, our trajectories show a slight linear increase of
cellular volume with age (33). However, by tracking cells
from birth, we were also able to detect a more marked
increase in size between the first and second generations
of �5% on average. We also tracked the percentage of
volume lost by a mother to its new bud, which also had an
interesting trend (Figure 2f). We found that it takes over
five cycles for the value to level off to �32%. This indi-
cates that cells in their early generations bud daughter cells
that are larger relative to their own size than they do
throughout most of their lives.

These statistics and trends come together to form a
comprehensive picture of how the volume changes in
a quasi-periodic manner over many cellular generations,
starting at birth. To determine how these volume fluc-
tuations can affect the concentrations of intracellular
proteins, we also measured fluorescence in the same
cells. The fluorescence trajectories revealed a constant
rate of protein production during each cell cycle
(Figure 1d, middle). While fairly constant and linear, we
found that the protein production rate for this constitutive
promoter increases over the first five cycles before leveling
off (Figure 2g). This could be due to many factors, such as
a gradual building up of protein synthesis machinery,
freeing up of resources originally dedicated to maturing
into a healthy adult cell or a priority shift to metabolic
gene expression as the cell matures.

We compiled all this information into a model that
combines growth and division of budding yeast cells
with constitutive YFP production. The model generates
volume and fluorescence trajectories for newly budded
cells for an arbitrary number of generations, which
closely match the experimental results (Figure 3a and b).
Histograms of volume, fluorescence and concentration
distributions provide a good metric for comparing the
experimental and simulated trajectories, and our simula-
tions match the means and standard deviations of the
experiments well (Figure 3c, d, and e).

Additionally, histograms from the microscopy data can
be used as a standard for understanding flow cytometry
data, which is commonly used to measure gene expression
noise but is often difficult to interpret. The FSC measure-
ment provided by a flow cytometer is believed to be pro-
portional to the size of the object being measured, but it
is unclear exactly what this value represents. In addition,
the tendency of yeast cells to clump and their unusual
shape due to asymmetric budding result in misleading
size distributions. In order to compare our microscopy
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Figure 2. Volume growth and division statistics. (a) For each trajectory, we determined the mean and standard deviation of certain cell growth
characteristics, starting at birth. These features were compared across each cell’s various generations as well as across all trajectories. (b) The time to
complete each cell cycle shows a downward trend over the first few generations. (c) The G1 (red) and S (blue) growth rates remain constant over
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generations. (f) The percent of volume lost by a mother cell to its bud decreases on average for about five generations. (g) Finally, the fluorescence
production rate is observed to increase over the first five or six generations, on average.
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size data to the FSC histogram provided by the flow
cytometer, we had to first calibrate the FSC measurement
to some physical characteristic of a yeast cell. To do this,
we used spherical flow calibration beads of various diam-
eters ranging from 2 to 15 mm. We ran these beads through
the flow cytometer on the same settings we use to collect
our yeast data, and we calculated the mean FSC measure-
ment. In order to determine if the FSC was proportional
to the length, area or volume of a sphere, we compared
the diameter, diameter2 and diameter3 of the beads to the
mean FSC value. It was clear from our data that the FSC
measurement is proportional to the diameter of the bead
(Supplementary Data).

Using the scope data as a reference for the true distri-
bution of sizes for individual budding cells, we show that
the FSC data provided by the flow cytometer yield a much
wider distribution (Figure 3f), which translates to much
higher fluorescence variability than is actually present in a
healthy population of single cells. The presence of clumps
of two or more cells as well as smaller particles (dead cells
or media debris) creates a much wider size distribution

than a homogeneous population of single cells would
yield. We can use our microscopy size histogram to deter-
mine a metric for gating the flow cytometry size histogram
about the mode of the distribution (Figure 3g). The fluo-
rescence distribution of only the gated cells accurately
reproduces the microscopy data (Figure 3h) and yields
a coefficient of variation that is three times lower than
that of the entire ungated data set.
As synthetic biology moves steadily toward the goal

of developing accurate and predictive models of cellular
behavior, it is clear that computational modeling will
rely heavily on quantitative measurements of cellular
phenomena. The cell division cycle is a highly dynamic
and noisy process that affects a cell’s behavior on many
levels, and the fluctuations in cellular volume will affect
the function of both native and synthetic gene networks.
It will be important to account for these fluctuations in
the construction of synthetic circuits designed to perform
a specific function, such as to generate oscillations or
toggle between two states, as they will inevitably
network dynamics. In addition, determining the sources
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and effects of noise in biological circuits is becoming
increasingly critical, as we try to develop more detailed
and robust models of genetic networks. These quasi-
periodic fluctuations will have an impact on the study
noise biology, which relies heavily on precise terms for
the dilution of cellular components due to cell growth.
Our results demonstrate the importance of accurately
representing the complex growth trends of a population
of cells in order to account for the effect that the resulting
volume fluctuations have on the concentrations of
intracellular components.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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